Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Vector Search for Practitioners with Elastic

You're reading from   Vector Search for Practitioners with Elastic A toolkit for building NLP solutions for search, observability, and security using vector search

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781805121022
Length 240 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jeff Vestal Jeff Vestal
Author Profile Icon Jeff Vestal
Jeff Vestal
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1:Fundamentals of Vector Search FREE CHAPTER
2. Chapter 1: Introduction to Vectors and Embeddings 3. Chapter 2: Getting Started with Vector Search in Elastic 4. Part 2: Advanced Applications and Performance Optimization
5. Chapter 3: Model Management and Vector Considerations in Elastic 6. Chapter 4: Performance Tuning – Working with Data 7. Part 3: Specialized Use Cases
8. Chapter 5: Image Search 9. Chapter 6: Redacting Personal Identifiable Information Using Elasticsearch 10. Chapter 7: Next Generation of Observability Powered by Vectors 11. Chapter 8: The Power of Vectors and Embedding in Bolstering Cybersecurity 12. Part 4: Innovative Integrations and Future Directions
13. Chapter 9: Retrieval Augmented Generation with Elastic 14. Chapter 10: Building an Elastic Plugin for ChatGPT 15. Index 16. Other Books You May Enjoy

Model Management and Vector Considerations in Elastic

In this chapter, we will provide an overview of the Hugging Face ecosystem, Elasticsearch’s Eland Python library, and practical strategies for using embedding models in Elasticsearch.

We will start by exploring the Hugging Face platform, discussing how to get started, selecting suitable models, and leveraging its vast collection of datasets. We will also delve into the features offered by Hugging Face’s Spaces and how to use them effectively.

Then, we will introduce the Eland Python library, created by Elastic, and demonstrate its usage through a Jupyter Notebook example.

The topics that we will cover in this chapter are as follows:

  • Eland Python library created by Elastic
  • Index mappings
  • Machine Learning (ML) nodes
  • Integrating ML models into Elasticsearch
  • Critical aspects of planning for cluster capacity
  • Storage efficiency strategies that can help optimize the performance and resource...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime