Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Rust Standard Library Cookbook

You're reading from   Rust Standard Library Cookbook Over 75 recipes to leverage the power of Rust

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788623926
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jan Hohenheim Jan Hohenheim
Author Profile Icon Jan Hohenheim
Jan Hohenheim
Daniel Durante Daniel Durante
Author Profile Icon Daniel Durante
Daniel Durante
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning the Basics FREE CHAPTER 2. Working with Collections 3. Handling Files and the Filesystem 4. Serialization 5. Advanced Data Structures 6. Handling Errors 7. Parallelism and Rayon 8. Working with Futures 9. Networking 10. Using Experimental Nightly Features 11. Other Books You May Enjoy

How it works...

In all functions, we start by allocating memory for a string of variable length.
We do this by creating a string slice (&str) and applying the to_string function on it [8, 18 and 28].
The first way to concatenate strings in Rust, as shown in the by_moving function, is by taking said allocated memory and moving it, together with an additional string slice, into a new variable [12]. This has a couple of advantages:

  • It's very straightforward and clear to look at, as it follows the common programming convention of concatenating with the + operator
  • It uses only immutable data. Remember to always try to write code in a style that creates as little stateful behavior as possible, as it results in more robust and reusable code bases
  • It reuses the memory allocated by hello [8], which makes it very performant

As such, this way of concatenating should be preferred whenever possible.
So, why would we even list other ways to concatenate strings? Well, I'm glad you asked, dear reader. Although elegant, this approach comes with two downsides:

  • hello is no longer usable after line [12], as it was moved. This means you can no longer read it in any way
  • Sometimes you may actually prefer mutable data in order to use state in small, contained environments

The two remaining functions address one concern each.
by_cloning[17] looks nearly identical to the first function, but it clones the allocated string [22] into a temporary object, allocating new memory in the process, which it then moves, leaving the original hello untouched and still accessible. Of course, this comes at the price of redundant memory allocations at runtime.

by_mutating[27] is the stateful way of solving our problem. It performs the involved memory management in-place, which means that the performance should be the same as in by_moving. In the end, it leaves hello mutable, ready for further changes. You may notice that this function doesn't look as elegant as the others, as it doesn't use the + operator. This is intentional, as Rust tries to push you through its design towards moving data in order to create new variables without mutating existing ones. As mentioned before, you should only do this if you really need mutable data or want to introduce state in a very small and manageable context.

You have been reading a chapter from
Rust Standard Library Cookbook
Published in: Mar 2018
Publisher: Packt
ISBN-13: 9781788623926
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime