Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Reproducible Data Science with Pachyderm

You're reading from   Reproducible Data Science with Pachyderm Learn how to build version-controlled, end-to-end data pipelines using Pachyderm 2.0

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801074483
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Svetlana Karslioglu Svetlana Karslioglu
Author Profile Icon Svetlana Karslioglu
Svetlana Karslioglu
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction to Pachyderm and Reproducible Data Science
2. Chapter 1: The Problem of Data Reproducibility FREE CHAPTER 3. Chapter 2: Pachyderm Basics 4. Chapter 3: Pachyderm Pipeline Specification 5. Section 2:Getting Started with Pachyderm
6. Chapter 4: Installing Pachyderm Locally 7. Chapter 5: Installing Pachyderm on a Cloud Platform 8. Chapter 6: Creating Your First Pipeline 9. Chapter 7: Pachyderm Operations 10. Chapter 8: Creating an End-to-End Machine Learning Workflow 11. Chapter 9: Distributed Hyperparameter Tuning with Pachyderm 12. Section 3:Pachyderm Clients and Tools
13. Chapter 10: Pachyderm Language Clients 14. Chapter 11: Using Pachyderm Notebooks 15. Other Books You May Enjoy

Summary

In this chapter, we have discussed a number of important concepts that help define why reproducibility is important and why it should be a part of a successful data science process.

We've learned that data science models are used to analyze historical data as input with a target goal to calculate the most probable and most successful result. We've established that replication, the ability to reproduce the results of a scientific experiment, is one of the fundamental principles of good research and that it is one of the best ways to ensure that your team is doing everything to reduce bias in your models. Bias can creep into a calculation from misrepresentation in a training dataset. Often, this reflects historical and social realities and norms accepted in society. Another way to reduce bias in your training data is to have a diverse team that includes representatives of all genders, races, and backgrounds.

We've learned that data dredging, or fishing, is an unethical technique used by some data scientists to prove a predefined hypothesis by cherry-picking the results of an experiment and only selecting the results that prove the desired outcome and ignoring any inconvenient trends.

We've also learned about the MLOps methodology, a lifecycle of a machine learning application, similar in its principle to the DevOps software lifecycle technique. MLOps includes the following main phases: planning, development, training, validation, deployment, and monitoring. All of the phases are continuously repeated, creating a feedback loop that ensures seamless experiment management from planning through development and testing to production and post-production phases.

We've also reviewed some of the most important aspects of ethical AI, a discipline of data science that focuses on ethical aspects of artificial intelligence, robotics, and data science. A failure to implement an ethical AI process in your organization might lead to undesirable legal consequences if deployed production models are found to be discriminatory.

In the next chapter, we will learn about the main concepts of the Pachyderm version-control system, which can help you address many of the issues described in this chapter.

You have been reading a chapter from
Reproducible Data Science with Pachyderm
Published in: Mar 2022
Publisher: Packt
ISBN-13: 9781801074483
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image