Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Parallel Programming Cookbook

You're reading from   Python Parallel Programming Cookbook Master efficient parallel programming to build powerful applications using Python

Arrow left icon
Product type Paperback
Published in Aug 2015
Publisher
ISBN-13 9781785289583
Length 286 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Getting Started with Parallel Computing and Python 2. Thread-based Parallelism FREE CHAPTER 3. Process-based Parallelism 4. Asynchronous Programming 5. Distributed Python 6. GPU Programming with Python Index

Kernel invocations with GPUArray


In the previous recipe, we saw how to invoke a kernel function using the class:

pycuda.compiler.SourceModule(kernel_source, nvcc="nvcc", options=None, other_options)

It creates a module from the CUDA source code called kernel_source. Then, the NVIDIA nvcc compiler is invoked with options to compile the code.

However, PyCUDA introduces the class pycuda.gpuarray.GPUArray that provides a high-level interface to perform calculations with CUDA:

class pycuda.gpuarray.GPUArray(shape, dtype, *, allocator=None, order="C")

This works in a similar way to numpy.ndarray, which stores its data and performs its computations on the compute device. The shape and dtype arguments work exactly as in NumPy.

All the arithmetic methods in GPUArray support the broadcasting of scalars. The creation of gpuarray is quite easy. One way is to create a NumPy array and convert it, as shown in the following code:

>>> import pycuda.gpuarray as gpuarray
>>> from numpy.random import...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image