Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Discrete Mathematics

You're reading from   Practical Discrete Mathematics Discover math principles that fuel algorithms for computer science and machine learning with Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781838983147
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ryan T. White Ryan T. White
Author Profile Icon Ryan T. White
Ryan T. White
Archana Tikayat Ray Archana Tikayat Ray
Author Profile Icon Archana Tikayat Ray
Archana Tikayat Ray
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part I – Basic Concepts of Discrete Math
2. Chapter 1: Key Concepts, Notation, Set Theory, Relations, and Functions FREE CHAPTER 3. Chapter 2: Formal Logic and Constructing Mathematical Proofs 4. Chapter 3: Computing with Base-n Numbers 5. Chapter 4: Combinatorics Using SciPy 6. Chapter 5: Elements of Discrete Probability 7. Part II – Implementing Discrete Mathematics in Data and Computer Science
8. Chapter 6: Computational Algorithms in Linear Algebra 9. Chapter 7: Computational Requirements for Algorithms 10. Chapter 8: Storage and Feature Extraction of Graphs, Trees, and Networks 11. Chapter 9: Searching Data Structures and Finding Shortest Paths 12. Part III – Real-World Applications of Discrete Mathematics
13. Chapter 10: Regression Analysis with NumPy and Scikit-Learn 14. Chapter 11: Web Searches with PageRank 15. Chapter 12: Principal Component Analysis with Scikit-Learn 16. Other Books You May Enjoy

Chapter 9: Searching Data Structures and Finding Shortest Paths

This chapter will discuss the searching techniques of graph, tree, and network data structures and practical applications of graph searches. We will introduce and analyze two popular algorithms for related problems: depth-first search (DFS) for graph searches and Dijkstra's algorithm for finding the shortest paths between vertices in networks. Both are introduced on small graphs to build intuitive understanding, and Python implementations are written that can scale up to real-world problems.

In this chapter, we will cover the following topics:

  • Searching graph and tree data structures
  • Depth-first search algorithm
  • The shortest path problem and variations of the problem
  • Finding shortest paths with brute force
  • Dijkstra's algorithm for finding shortest paths
  • Python implementation of Dijkstra's algorithm

By the end of this chapter, you will be able to explain the purpose...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image