Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Power BI Machine Learning and OpenAI

You're reading from   Power BI Machine Learning and OpenAI Explore data through business intelligence, predictive analytics, and text generation

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781837636150
Length 308 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Greg Beaumont Greg Beaumont
Author Profile Icon Greg Beaumont
Greg Beaumont
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Data Exploration and Preparation
2. Chapter 1: Requirements, Data Modeling, and Planning FREE CHAPTER 3. Chapter 2: Preparing and Ingesting Data with Power Query 4. Chapter 3: Exploring Data Using Power BI and Creating a Semantic Model 5. Chapter 4: Model Data for Machine Learning in Power BI 6. Part 2: Artificial Intelligence and Machine Learning Visuals and Publishing to the Power BI Service
7. Chapter 5: Discovering Features Using Analytics and AI Visuals 8. Chapter 6: Discovering New Features Using R and Python Visuals 9. Chapter 7: Deploying Data Ingestion and Transformation Components to the Power BI Cloud Service 10. Part 3: Machine Learning in Power BI
11. Chapter 8: Building Machine Learning Models with Power BI 12. Chapter 9: Evaluating Trained and Tested ML Models 13. Chapter 10: Iterating Power BI ML models 14. Chapter 11: Applying Power BI ML Models 15. Part 4: Integrating OpenAI with Power BI
16. Chapter 12: Use Cases for OpenAI 17. Chapter 13: Using OpenAI and Azure OpenAI in Power BI Dataflows 18. Chapter 14: Project Review and Looking Forward 19. Index 20. Other Books You May Enjoy

Assessing the Predict Height ML regression model

The Predict Height ML model is a regression model that’s designed to predict the height at which an aircraft was impacted by wildlife. The regression ML model predicts a numeric value representing height in feet from the ground, at which an impact happened based on the features in the report. Features such as Speed, Distance, and Phase of Flight were listed as top predictors.

80% of the variation in the testing results is explained by the model. Is 80% good? It depends on the use case and the requirements! If the variation (R squared) is 100%, then the ML model will give perfect predictions. 80% could indicate that the predictions are good but that independent and random variables might be 100% impossible. Or, maybe a higher value is possible and the data is either missing important features or measures are inaccurate.

In this use case, common sense dictates that explaining 100% of the variation would be impossible. You...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime