Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
MLOps with Red Hat OpenShift

You're reading from   MLOps with Red Hat OpenShift A cloud-native approach to machine learning operations

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805120230
Length 238 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ross Brigoli Ross Brigoli
Author Profile Icon Ross Brigoli
Ross Brigoli
Faisal Masood Faisal Masood
Author Profile Icon Faisal Masood
Faisal Masood
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Introduction
2. Chapter 1: Introduction to MLOps and OpenShift FREE CHAPTER 3. Part 2: Provisioning and Configuration
4. Chapter 2: Provisioning an MLOps Platform in the Cloud 5. Chapter 3: Building Machine Learning Models with OpenShift 6. Part 3: Operating ML Workloads
7. Chapter 4: Managing a Model Training Workflow 8. Chapter 5: Deploying ML Models as a Service 9. Chapter 6: Operating ML Workloads 10. Chapter 7: Building a Face Detector Using the Red Hat ML Platform 11. Index 12. Other Books You May Enjoy

Optimizing cost for your ML platform

In this section, you will learn how to use different OpenShift capabilities with Red Hat Data Science to optimize the cost for your platform. While we will not dive deep into this topic, we will provide you with some basic concepts to continue optimizing your platform resources.

When you run any software on the Red Hat OpenShift platform, such as a Jupyter notebook, build pipelines, and model serving, all of it runs as containers on the platform. These containers run on the machines or worker nodes, which could be a VM in a cloud platform such as Amazon EC2. Let’s see how OpenShift provisions machines to run containers for your MLOps needs.

Machine management in OpenShift

Machine management is OpenShift’s capability to work with the cloud or on-premises infrastructure providers, such as Amazon Web Services (AWS) or VMware (VMW), and to provision and scale the machines for your workloads. OpenShift adapts to changing workloads...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image