Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering NLP from Foundations to LLMs

You're reading from   Mastering NLP from Foundations to LLMs Apply advanced rule-based techniques to LLMs and solve real-world business problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781804619186
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Meysam Ghaffari Meysam Ghaffari
Author Profile Icon Meysam Ghaffari
Meysam Ghaffari
Lior Gazit Lior Gazit
Author Profile Icon Lior Gazit
Lior Gazit
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: Navigating the NLP Landscape: A Comprehensive Introduction 2. Chapter 2: Mastering Linear Algebra, Probability, and Statistics for Machine Learning and NLP FREE CHAPTER 3. Chapter 3: Unleashing Machine Learning Potentials in Natural Language Processing 4. Chapter 4: Streamlining Text Preprocessing Techniques for Optimal NLP Performance 5. Chapter 5: Empowering Text Classification: Leveraging Traditional Machine Learning Techniques 6. Chapter 6: Text Classification Reimagined: Delving Deep into Deep Learning Language Models 7. Chapter 7: Demystifying Large Language Models: Theory, Design, and Langchain Implementation 8. Chapter 8: Accessing the Power of Large Language Models: Advanced Setup and Integration with RAG 9. Chapter 9: Exploring the Frontiers: Advanced Applications and Innovations Driven by LLMs 10. Chapter 10: Riding the Wave: Analyzing Past, Present, and Future Trends Shaped by LLMs and AI 11. Chapter 11: Exclusive Industry Insights: Perspectives and Predictions from World Class Experts 12. Index 13. Other Books You May Enjoy

Technical requirements

To successfully navigate through this chapter, certain technical prerequisites are necessary, as follows:

  • Programming knowledge: A strong understanding of Python is essential, as it’s the primary language used for most DL and NLP libraries.
  • Machine learning fundamentals: A good grasp of basic ML concepts such as training/testing data, overfitting, underfitting, accuracy, precision, recall, and F1 score will be valuable.
  • DL basics: Familiarity with DL concepts and architectures, including neural networks, backpropagation, activation functions, and loss functions, will be essential. Knowledge of RNNs and CNNs would be advantageous but not strictly necessary as we will focus more on transformer architectures.
  • NLP basics: Some understanding of basic NLP concepts such as tokenization, stemming, lemmatization, and word embeddings (such as Word2Vec or GloVe) would be beneficial.
  • Libraries and frameworks: Experience with libraries such as TensorFlow and PyTorch for building and training neural models is crucial. Familiarity with NLP libraries such as NLTK or SpaCy can also be beneficial. For working with BERT specifically, knowledge of the transformers library from Hugging Face would be very helpful.
  • Hardware requirements: DL models, especially transformer-based models such as BERT, are computationally intensive and typically require a modern graphics processing unit (GPU) to train in a reasonable amount of time. Access to a high-performance computer or cloud-based solutions with GPU capabilities is highly recommended.
  • Mathematics: A good understanding of linear algebra, calculus, and probability is helpful for understanding the inner workings of these models, but most of the chapter can be understood without in-depth mathematical knowledge.

These prerequisites are intended to equip you with the necessary background to understand and implement the concepts discussed in the chapter. With these in place, you should be well-prepared to delve into the fascinating world of DL for text classification using BERT.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image