Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Cloud Development using Microsoft Azure

You're reading from   Mastering Cloud Development using Microsoft Azure Master the art of efficiently composing Azure services and implement them in real-world scenarios

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781782173335
Length 352 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Marco Parenzan Marco Parenzan
Author Profile Icon Marco Parenzan
Marco Parenzan
Roberto Freato Roberto Freato
Author Profile Icon Roberto Freato
Roberto Freato
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Building Basic Services FREE CHAPTER 2. Enhancing the Hybrid Process 3. Building the Frontend 4. Building the Backend 5. Building the Mobile Experience 6. Building the API Layer 7. Working with Messages 8. Deploying Solutions in Azure Index

Implementing the development process

Instead of teaching you how to manage the development process at its best, this is an overview of how to integrate services in order to reduce the complexity of the deployment and the administration of a popular Team Foundation Server (TFS) infrastructure.

Tip

TFS is a comprehensive product providing source code control, automated testing, an automated build platform, reporting, project management, and counting. On the other hand, the new kid on the block (over the last few years) is called Visual Studio Online (VSO), which is the Azure-hosted version of TFS, missing just some advanced features (such as SQL Reporting/BI).

There are a lot of connected products and services around TFS/VSO, designed to integrate and develop the even more complex scenarios of Application Lifecycle Management (ALM). The advantage of using VSO is that, as SaaS, it requires zero maintenance (it is all up by Microsoft) and a very short provisioning time: this is why it is useful in many contexts where a ready-to-go solution is required with a minimal set of customization points.

CM primarily needs to save/control its code base by adopting a source code repository service. As usual, some questions can help while choosing the appropriate vendor/service:

  • Where is the code repository located?
  • Which protocols (a.k.a. source control engines) is CM using?
  • Does the service integrate with third-party services? Which ones?

We know that real questions can be many more than just these, but always try to stop and write down the requirements before jumping into a new service.

Note

SaaS and PaaS maintenance

We are repeating the power of Platform-as-a-Service (and, consequently, also the power of SaaS) as a prayer in reducing the overall governance of a company by focusing just on its core businesses without dealing with the management and maintenance of the IT infrastructure. All true and all beautiful, but do not confuse this with the capability of raising the number of services indefinitely and without any real scope.

Even PaaS services require, as far as possible, some maintenance effort; once created, they need attention. Try to introduce a new service only if the existing services in place do not cover the requirements and only if the new service can be correctly investigated before building strong dependencies on it.

Creating a new VSO environment

CloudMakers developers (which are actually two in number, Luke and Flint, at the time of beginning the start-up) come with different kinds of experience. Among the differences between them, Luke has always used TFS in his project, and he is accustomed to its native, centralized source control engine. On the other hand, Flint has been a full stack developer, using distributed source control engines, such as Mercurial and Git.

As we see later, since every team project has its own source control engine, we can create personal workspaces (workspaces under the control of a single developer to test, play, and prototype) according to the developers' preference, while the company's workspaces (those containing the actual code base) can use a single, shared, and different engine.

Tip

Using different source control engines can be very fair in organizations where several languages and technologies are put in place. However, some operations (such as collection-level branching and merging) are not allowed, making the integration between projects managed with different engines harder.

We can create a brand new VSO account by directly going to https://go.microsoft.com/fwlink/?LinkId=307137&clcid=0x409. Or, we can use the Azure Portal by creating our first team project.

In the TFS/VSO ecosystem, a single deployment can have this tree structure:

  • Project collections: These can be 1 to n in number. A project collection is a high-level collection of folders named Team Projects.
  • Team Projects: These can be 1 to n in number. A Team Project is a collection of code, no matter how many real software solutions there may be. The term "project" should refer to a business project, which, of course, is a collection of multiple software packages/solutions/projects itself.

In VSO, there is just one collection (DefaultCollection) with many (to be created by users) Team Projects.

Tip

For more information on what a team project is (or should be), go to https://msdn.microsoft.com/en-us/library/ms181234(v=vs.90).aspx.

From within the Azure Portal, we can find the New Team Project wizard to open this blade:

Creating a new VSO environment

This is where we can create new Team Projects

Contextually, if not already created/owned, we need to create a new VSO account.

Creating a new VSO environment

The creation of the CM account within DefaultCollection

The first team project we create can be a test, so play with the configuration settings:

  • Version control: We can choose between TFVC (the standard engine of TFS) and Git (the well-known open and distributed engine)
  • Process Template: We can choose how the development process should be set in order to organize the frontend experience as well as part of the implicit ALM (the current options are Scrum 2013, Agile 2013 and CMMI 2013)

VSO can integrate users with personal identities (Microsoft accounts) or organizations' identities (Azure AD). We'll learn how Azure AD works in the next sections, but remember that it is a good practice to bind a VSO account with an Azure AD tenant in order to implement better control of who has access to resources.

Tip

In fact, try to imagine a contributor using the company's VSO with their personal identity: during the development process, even if it lasts years, they can gain access to multiple resources by adding their ID to various projects/folders. When they decide to leave (or when the contribution ends), an administrator has to manually check all the projects and resources involved and disable the ID from access. With Azure AD, which is an Identity and Access Management (IAM) solution, an administrator can just centrally disable the access of the single account, disabling all the connected services' entry points with a single action.

After provisioning a VSO account, when the billing and some minor configuration details are summarized in the Azure Portal, its management console is available here:

https://<<name_of_account>>.visualstudio.com

Each team project is available at this link, as shown here:

https://<<name_of_account>>.visualstudio.com/DefaultCollection/<<name_of_project>>

The management console of the portal looks similar to the one shown in the following screenshot:

Creating a new VSO environment

This is the Kanban board created as a consequence of the Process Template selection while creating the team project. We can define tasks, assign people, create items (such as Stories, Iterations, and Features) and also manage other aspects of the development process (using the Code/Build/Test menus).

Integrating Visual Studio

Visual Studio automatically recognizes VSO/TFS based on the endpoint URL we give to it. In the case of VSO, a web-based sign-in is asked from the user in order to perform a claims-based authentication for the correct provider (a Microsoft account or Azure AD). If a standard TFS is detected, even basic authentication will be available.

Integrating Visual Studio

This is the DefaultCollection collection of the Team Project of the VSO account along with three Team Projects

Visual Studio 2013/2015 natively supports both Git and TFS as backend source control engines, but only one at time can be the default, as shown in the following screenshot:

Integrating Visual Studio

This is where we can choose the default source control engine

In the case of TFVC-based Team Projects, we can map and get the entire project collection in a base local folder, as follows:

Integrating Visual Studio

This is the source control explorer, the place where we can manage the TFVC-based projects of the collection

In the case of a Git-based team project, we can start by just cloning the repository.

Integrating Visual Studio

We are now cloning the Git-based repo into a local folder

Tip

The Git backend of VSO has been implemented in a standard way in order to enable the majority of the existing clients to connect to it and push the code.

Finally, after writing some code, we can save our work as follows:

Integrating Visual Studio

In this example, we both Commit (save locally) and Push (align the remote Git repo) in a single action. For further information regarding Git, refer to the Git documentation

Integrating third-party services

As mentioned at the beginning of this section, VSO is a complete solution for ALM, and it's not just another source control environment. It can automatically deploy the build result to connected services, and more generally, it can react to specific triggers with custom actions even against third-party services.

A webhook is a method to notify decoupled systems in a standard way based on HTTP and public endpoints. In VSO, there are several predefined service hooks, whose purpose is to trigger events against third-party services in the case of a specific VSO event that has occurred. At the time of writing, the events supported by VSO (which VSO can listen to) are as follows:

  • Build completed: This triggers if a build is completed (in the case of failure, success, and other supported statuses)
  • Code checked-in/pushed: This triggers when someone saves their code
  • Team room message posted: This is self-explanatory
  • Work item actions (creation/comment/update): This triggers in the event of one of the supported actions on work items

Tip

This last one is particularly useful for the purpose of integrating with a company chat service in order to create real-time engagement on the progress of the overall work.

In fact, among the built-in supported third-party services, we have the following:

  • Azure Service Bus and Storage: Supported actions are related to sending a message on a queue, a topic, a notification hub, or a storage queue. It's useful in building some logic applications in response to these events.
  • Jenkins: Supported actions are related to triggering a build into Jenkins since it is a popular (and open source) Continuous Integration (CI) service.
  • MyGet: This is a NuGet-as-a-Service solution with great features. The most useful supported action is to automatically publish a NuGet package into the MyGet repository if a build occurs on the VSO side.
  • Slack: Since this is one of the most popular messaging systems, the obvious supported action is to post a message on a specific channel in the case of an event on the VSO side.
  • ZenDesk: This is one of the most popular ticketing systems in the world. A nice use case for integration shows that users from Visual Studio can comment on a work item, triggering a private comment in a ticket on the ZenDesk side.

In fact, there are a lot more built-in integrations, and there is also a provider, Zapier, that acts as a simple orchestrator itself. On the Zapier side, we can react to webhooks by triggering a lot (hundreds) of different services, even the ones mentioned earlier.

Note

Take a look at Zapier's capabilities here: https://zapier.com/app/use-cases in order to get an idea about the possible integration scenarios.

Finally, if you want to trigger a custom HTTP listener, there is a simple webhooks provider, letting you decide what to notify and how to do it as long as it's understood that the target should be an HTTP endpoint.

Integrating third-party services

In this hook, we listen to the Work item updated event in case the event occurred in the Core area for an Epic work item type and when someone change the State field

Integrating third-party services

These are some of the invocation settings in custom webhooks. We can also specify an optional basic authentication and the details of what to send in the body of the POST request.

You have been reading a chapter from
Mastering Cloud Development using Microsoft Azure
Published in: Jun 2016
Publisher: Packt
ISBN-13: 9781782173335
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image