Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Beaglebone Robotics

You're reading from   Mastering Beaglebone Robotics Master the power of the BeagleBone Black to maximize your robot-building skills and create awesome projects

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783988907
Length 234 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Richard Grimmett Richard Grimmett
Author Profile Icon Richard Grimmett
Richard Grimmett
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Preparing the BeagleBone Black FREE CHAPTER 2. Building a Basic Tracked Vehicle 3. Adding Sensors to Your Tracked Vehicle 4. Vision and Image Processing 5. Building a Robot that Can Walk 6. A Robot that Can Sail 7. Using GPS for Navigation 8. Measuring Wind Speed – Integrating Analog Sensors 9. An Underwater Remotely Operated Vehicle 10. A Quadcopter 11. An Autonomous Quadcopter Index

Beginning with a GPS tutorial


Before you get started, let's start with a brief tutorial on GPS. GPS, which stands for Global Positioning System, is a system of satellites that transmits signals. GPS devices use these signals to calculate a position. There are a total of 24 satellites transmitting signals all around the earth at any given moment, but your device can only see the signal from a much smaller set of satellites.

Each of these satellites transmits a very accurate time signal that your device can receive and interpret. It receives the time signal from each of these satellites, and then based on the delay—the time it takes the signal to reach the device—it calculates the position of the receiver based on a procedure called triangulation. The following two diagrams illustrate how the device uses the delay differences from three satellites to calculate its position. The system can use more than three satellites, but for the sake of simplicity, let's look at how your device can use...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image