Data analysis, manual charting, thresholding, and alerting have been an inherent part of IT and security operations for decades. Until the advent of sophisticated machine learning algorithms and techniques, much of the burden of proactive insight, problem detection, and root cause analysis fell onto the shoulders of the analysts. As the complexity and scale of modern applications and infrastructure has grown exponentially, it is apparent that humans need help. Elastic machine learning (ML) is an effective, easy-to-use solution for anomaly detection and forecasting use cases in relation to time-series machine data. This definitive elastic ML guide will get the reader proficient in the operation and techniques of advanced analytics without the need to be well-versed in data science.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine