Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling to solve all your data analysis problems

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784393908
Length 452 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index

Tuning stock models for better performance

Some learning problems are well-suited to the stock models presented in the previous chapters. In such cases, it may not be necessary to spend much time iterating and refining the model; it may perform well enough as it is. On the other hand, some problems are inherently more difficult. The underlying concepts to be learned may be extremely complex, requiring an understanding of many subtle relationships, or it may be affected by random variation, making it difficult to define the signal within the noise.

Developing models that perform extremely well on difficult problems is every bit an art as it is a science. Sometimes a bit of intuition is helpful when trying to identify areas where performance can be improved. In other cases, finding improvements will require a brute-force, trial and error approach. Of course, the process of searching numerous possible improvements can be aided by the use of automated programs.

In Chapter 5, Divide and Conquer...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime