Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization FREE CHAPTER 2. Applying Machine Learning to Structured Data 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Visualizing latent spaces with t-SNE


We now have an autoencoder that takes in a credit card transaction and outputs a credit card transaction that looks more or less the same. However, this is not why we built the autoencoder. The main advantage of an autoencoder is that we can now encode the transaction into a lower dimensional representation that captures the main elements of the transaction.

To create the encoder model, all we have to do is to define a new Keras model that maps from the input to the encoded state:

encoder = Model(data_in,encoded)

Note that you don't need to train this model again. The layers keep the weights from the previously trained autoencoder.

To encode our data, we now use the encoder model:

enc = encoder.predict(X_test)

But how would we know whether these encodings contain any meaningful information about fraud? Once again, visual representation is key. While our encodings have fewer dimensions than the input data, they still have 12 dimensions. It's impossible for humans...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image