Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Cybersecurity Cookbook

You're reading from   Machine Learning for Cybersecurity Cookbook Over 80 recipes on how to implement machine learning algorithms for building security systems using Python

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781789614671
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Emmanuel Tsukerman Emmanuel Tsukerman
Author Profile Icon Emmanuel Tsukerman
Emmanuel Tsukerman
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Machine Learning for Cybersecurity FREE CHAPTER 2. Machine Learning-Based Malware Detection 3. Advanced Malware Detection 4. Machine Learning for Social Engineering 5. Penetration Testing Using Machine Learning 6. Automatic Intrusion Detection 7. Securing and Attacking Data with Machine Learning 8. Secure and Private AI 9. Other Books You May Enjoy Appendix

Advanced Malware Detection

In this chapter, we will be covering more advanced concepts for malware analysis. In the previous chapter, we covered general methods for attacking malware classification. Here, we will discuss more specific approaches and cutting-edge technologies. In particular, we will cover how to approach obfuscated and packed malware, how to scale up the collection of N-gram features, and how to use deep learning to detect and even create malware.

This chapter comprises the following recipes:

  • Detecting obfuscated JavaScript
  • Featurizing PDF files
  • Extracting N-grams quickly using the hash-gram algorithm
  • Building a dynamic malware classifier
  • MalConv – end-to-end deep learning for malicious PE detection
  • Using packers
  • Assembling a packed sample dataset
  • Building a classifier for packers
  • MalGAN – creating evasive malware
  • Tracking malware drift
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image