Preface
If you are reading this, you are probably aware that machine learning (ML) has become a strategic capability in many industries, including the investment industry. The explosion of digital data closely related to the rise of ML is having a particularly powerful impact on investing, which already has a long history of using sophisticated models to process information. These trends are enabling novel approaches to quantitative investment and are boosting the demand for the application of data science to both discretionary and algorithmic trading strategies.
The scope of trading across asset classes is vast because it ranges from equities and government bonds to commodities and real estate. This implies that a very large range of new alternative data sources may be relevant above and beyond the market and fundamental data that used to be at the center of most analytical efforts in the past.
You also may have come across the insight that the successful application of ML or data science requires the integration of statistical knowledge, computational skills, and domain expertise at the individual or team level. In other words, it is essential to ask the right questions, identify and understand the data that may provide the answers, deploy a broad range of tools to obtain results, and interpret them in a way that leads to the right decisions.
Therefore, this book provides an integrated perspective on the application of ML to the domain of investment and trading. In this preface, we outline what you should expect, how we have organized the content to facilitate achieving our objectives, and what you need both to meet your goals and have fun in the process.