What does an ML solution look like?
When you think of ML engineering, you would be forgiven for defaulting to imagining working on voice assistance and visual recognition apps (I fell into this trap in previous pages – did you notice?). The power of ML, however, lies in the fact that wherever there is data and an appropriate problem, it can help and be integral to the solution.
Some examples might help make this clearer. When you type a text message and your phone suggests the next words, it can very often be using a natural language model under the hood. When you scroll any social media feed or watch a streaming service, recommendation algorithms are working double time. If you take a car journey and an app forecasts when you are likely to arrive at your destination, there is going to be some kind of regression at work. Your loan application often results in your characteristics and application details being passed through a classifier. These applications are not the ones...