This chapter begins by analyzing linear classification problems, with particular focus on logistic regression (despite its name, it's a classification algorithm) and stochastic gradient descent approaches. Even if these strategies appear too simple, they're still the main choices in many classification tasks. Speaking of which, it's useful to remember a very important philosophical principle: Occam's razor. In our context, it states that the first choice must always be the simplest and only if it doesn't fit, it's necessary to move on to more complex models. In the second part of the chapter, we're going to discuss some common metrics useful to evaluate a classification task. They are not limited to linear models, so we use them when talking about different strategies as well.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine