Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Julia for Data Science

You're reading from   Julia for Data Science high-performance computing simplified

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785289699
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anshul Joshi Anshul Joshi
Author Profile Icon Anshul Joshi
Anshul Joshi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Groundwork – Julia's Environment FREE CHAPTER 2. Data Munging 3. Data Exploration 4. Deep Dive into Inferential Statistics 5. Making Sense of Data Using Visualization 6. Supervised Machine Learning 7. Unsupervised Machine Learning 8. Creating Ensemble Models 9. Time Series 10. Collaborative Filtering and Recommendation System 11. Introduction to Deep Learning

Machine learning – the process


Machine learning algorithms are trained in keeping with the idea of how the human brain works. They are somewhat similar. Let's discuss the whole process.

The machine learning process can be described in three steps:

  1. Input

  2. Abstraction

  3. Generalization

These three steps are the core of how the machine learning algorithm works. Although the algorithm may or may not be divided or represented in such a way, this explains the overall approach:

  1. The first step concentrates on what data should be there and what shouldn't. On the basis of that, it gathers, stores, and cleans the data as per the requirements.

  2. The second step entails the data being translated to represent the bigger class of data. This is required as we cannot capture everything and our algorithm should not be applicable for only the data that we have.

  3. The third step focuses on the creation of the model or an action that will use this abstracted data, which will be applicable for the broader mass.

So, what should...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image