Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Interactive Data Visualization with Python

You're reading from   Interactive Data Visualization with Python Present your data as an effective and compelling story

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher
ISBN-13 9781800200944
Length 362 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Shubhangi Hora Shubhangi Hora
Author Profile Icon Shubhangi Hora
Shubhangi Hora
Abha Belorkar Abha Belorkar
Author Profile Icon Abha Belorkar
Abha Belorkar
Anshu Kumar Anshu Kumar
Author Profile Icon Anshu Kumar
Anshu Kumar
Sharath Chandra Guntuku Sharath Chandra Guntuku
Author Profile Icon Sharath Chandra Guntuku
Sharath Chandra Guntuku
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Introduction to Visualization with Python – Basic and Customized Plotting 2. Static Visualization – Global Patterns and Summary Statistics FREE CHAPTER 3. From Static to Interactive Visualization 4. Interactive Visualization of Data across Strata 5. Interactive Visualization of Data across Time 6. Interactive Visualization of Geographical Data 7. Avoiding Common Pitfalls to Create Interactive Visualizations Appendix

Data Formatting and Interpretation

The purpose of interactive data visualization is to visually and interactively present data so that it is easy to comprehend. Thus, naturally, data is the most important factor of any visualization. Hence, the first phase of data visualization is understanding the data in front of you – understanding what it is, what it means, and what it's conveying. Only when you understand the data will you be able to design a visualization that will help others understand it.

Additionally, it is important to ensure that your data makes sense and contains enough information – be it categorical, numerical, or a mix of both – to be visualized. So, if you are dealing with erroneous or dirty data, you're bound to end up with a faulty visualization.

In the next section, we'll look at a few ways to avoid common mistakes that are typically made in this phase of data and how to avoid them.

Avoiding Common Pitfalls while Dealing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime