Once the data has been cleaned and reformatted, one of the first steps of the analysis is to identify the structure of the series components. The decomposition of time series is a generic name for the process of separating a series into its components. This process provides insights into the structural patterns of the series. Typically, those insights utilize and identify the most appropriate approaches to handle the series, based on the aim of the analysis (for example, seasonality analysis, and forecasting). For example, if you identify in this process that the series has a strong seasonality pattern, you should select models that have the ability to handle this pattern. Although there are multiple decomposition methods, in this chapter, we will focus on the classical seasonal decomposition method, as most methods are based on a type of extension...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand