Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Reinforcement Learning for Games

You're reading from   Hands-On Reinforcement Learning for Games Implementing self-learning agents in games using artificial intelligence techniques

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781839214936
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Micheal Lanham Micheal Lanham
Author Profile Icon Micheal Lanham
Micheal Lanham
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Exploring the Environment
2. Understanding Rewards-Based Learning FREE CHAPTER 3. Dynamic Programming and the Bellman Equation 4. Monte Carlo Methods 5. Temporal Difference Learning 6. Exploring SARSA 7. Section 2: Exploiting the Knowledge
8. Going Deep with DQN 9. Going Deeper with DDQN 10. Policy Gradient Methods 11. Optimizing for Continuous Control 12. All about Rainbow DQN 13. Exploiting ML-Agents 14. DRL Frameworks 15. Section 3: Reward Yourself
16. 3D Worlds 17. From DRL to AGI 18. Other Books You May Enjoy

Monte Carlo Methods

For this chapter, we will jump back to the trial-and-error thread of reinforcement learning (RL) and look at Monte Carlo methods. This is a class of methods that works by episodically playing through an environment instead of planning. We will see how this improves our RL search for the best policy and we now start to think of our algorithm as an actual agent—one that explores the game environment rather than preplans a policy, which, in turn, allows us to understand the benefits of using a model for planning or not. From there, we will look at the Monte Carlo method and how to implement it in code. Then, we will revisit a larger version of the FrozenLake environment with our new Monte Carlo agent algorithm.

In this chapter, we will continue looking at how RL has evolved and, in particular, focus on the trial and error thread with the Monte Carlo method...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image