A Siamese network, as the name suggests, is an architecture with two parallel layers. In this architecture, instead of a model learning to classify its inputs using classification loss functions, the model learns to differentiate between two given inputs. It compares two inputs based on a similarity metric and checks whether they are the same. Similar to any deep learning architecture, a Siamese network also has two phases—a training and a testing phase. But, for a one-shot learning approach (as we won't have a lot of data points), we will be training the model architecture on one dataset and testing it on a different dataset. To put this in simpler terms, we learn image embeddings using a supervised metric-based approach with Siamese neural networks, and then reuse that network's features for one-shot learning without fine-tuning...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine