In this chapter, we learned how to save and load model parameters in different ML frameworks. We saw that all the frameworks we used in the Shogun, Shark-ML, Dlib, and PyTorch libraries have an API for model parameter serialization. Usually, these are quite simple functions that work with model objects and some input and output streams. Also, we discussed another type of serialization API that can be used to save and load the overall model architecture. At the time of writing, the frameworks we used don't fully support such functionality. The Shogun toolkit can load neural network architectures from the JSON descriptions, but can't export them. The Dlib library can export neural networks in XML format but can't load them. The PyTorch C++ API lacks a model architecture that supports exporting, but it can load and evaluate model architectures that have been...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine