Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Science and Python Machine Learning

You're reading from   Hands-On Data Science and Python Machine Learning Perform data mining and machine learning efficiently using Python and Spark

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787280748
Length 420 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Frank Kane Frank Kane
Author Profile Icon Frank Kane
Frank Kane
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Statistics and Probability Refresher, and Python Practice 3. Matplotlib and Advanced Probability Concepts 4. Predictive Models 5. Machine Learning with Python 6. Recommender Systems 7. More Data Mining and Machine Learning Techniques 8. Dealing with Real-World Data 9. Apache Spark - Machine Learning on Big Data 10. Testing and Experimental Design

Making movie recommendations to people

Okay, let's actually build a full-blown recommender system that can look at all the behavior information of everybody in the system, and what movies they rated, and use that to actually produce the best recommendation movies for any given user in our dataset. Kind of amazing and you'll be surprised how simple it is. Let's go!

Let's begin using the ItemBasedCF.ipynb file and let's start off by importing the MovieLens dataset that we have. Again, we're using a subset of it that just contains 100,000 ratings for now. But, there are larger datasets you can get from GroupLens.org-up to millions of ratings; if you're so inclined. Keep in mind though, when you start to deal with that really big data, you're going to be pushing the limits of what you can do in a single machine and what Pandas can handle. Without...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image