Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Docker Certified Associate (DCA): Exam Guide

You're reading from   Docker Certified Associate (DCA): Exam Guide Enhance and validate your Docker skills by gaining Docker certification

Arrow left icon
Product type Paperback
Published in Sep 2020
Publisher Packt
ISBN-13 9781839211898
Length 612 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Francisco Javier Ramírez Urea Francisco Javier Ramírez Urea
Author Profile Icon Francisco Javier Ramírez Urea
Francisco Javier Ramírez Urea
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Section 1 - Key Container Concepts
2. Modern Infrastructures and Applications with Docker FREE CHAPTER 3. Building Docker Images 4. Running Docker Containers 5. Container Persistency and Networking 6. Deploying Multi-Container Applications 7. Introduction to Docker Content Trust 8. Section 2 - Container Orchestration
9. Introduction to Orchestration 10. Orchestration Using Docker Swarm 11. Orchestration Using Kubernetes 12. Section 3 - Docker Enterprise
13. Introduction to the Docker Enterprise Platform 14. Universal Control Plane 15. Publishing Applications in Docker Enterprise 16. Implementing an Enterprise-Grade Registry with DTR 17. Section 4 - Preparing for the Docker Certified Associate Exam
18. Summarizing Important Concepts 19. Mock Exam Questions and Final Notes 20. Assessments 21. Other Books You May Enjoy

Windows containers

Containers started with Linux, but nowadays, we can run and orchestrate containers on Windows. Microsoft integrated containers on Windows in Windows 2016. With this release, they consolidated a partnership with Docker to create a container engine that runs containers natively on Windows.

After a few releases, Microsoft decided to have two different approaches to containers on Windows, these being the following:

  • Windows Server Containers (WSC), or process containers
  • Hyper-V Containers

Because of the nature of Windows operating system implementation, we can share kernels but we can't isolate processes from the system services and DLLs. In this situation, process containers need a copy of the required system services and many DLLs to be able to make API calls to the underlying host operating system. This means that containers that use process container isolation will run with many system processes and DLLs inside. In this case, images are very big and will have a different kind of portability; we will only be able to run Windows containers based on the same underlying operating system version.

As we have seen, process containers need to copy a portion of the underlying operating system inside in order to run. This means that we can only run the same operating system containers. For example, running containers on top of Windows Server 2016 will require a Windows Server 2016 base image.

On the other hand, Hyper-V containers will not have these limitations because they will run on top of a virtualized kernel. This adds overhead, but the isolation is substantially better. In this case, we won't be able to run these kinds of containers on older Microsoft Windows versions. These containers will use optimized virtualization to isolate the new kernel for our process.

The following diagram represents both types of MS Windows container isolation:

Process isolation is a default container isolation on Windows Server, but Windows 10 Pro and Enterprise will run Hyper-V isolation. Since the Windows 10 October 2018 update, we can choose to use old-style process isolation with the --isolation=process flag on Windows 10 Pro and Enterprise.
Please check the Windows operating system's portability because this is a very common problem on Windows containers.

Networking in Windows containers is different from Linux. The Docker host uses a Hyper-V virtual switch to provide connectivity to containers and connects them to virtual switches using either a host virtual interface (Windows Server containers) or a synthetic VM interface (Hyper-V containers).

You have been reading a chapter from
Docker Certified Associate (DCA): Exam Guide
Published in: Sep 2020
Publisher: Packt
ISBN-13: 9781839211898
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image