Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow 2 and Keras

You're reading from   Deep Learning with TensorFlow 2 and Keras Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781838823412
Length 646 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Neural Network Foundations with TensorFlow 2.0 FREE CHAPTER 2. TensorFlow 1.x and 2.x 3. Regression 4. Convolutional Neural Networks 5. Advanced Convolutional Neural Networks 6. Generative Adversarial Networks 7. Word Embeddings 8. Recurrent Neural Networks 9. Autoencoders 10. Unsupervised Learning 11. Reinforcement Learning 12. TensorFlow and Cloud 13. TensorFlow for Mobile and IoT and TensorFlow.js 14. An introduction to AutoML 15. The Math Behind Deep Learning 16. Tensor Processing Unit 17. Other Books You May Enjoy
18. Index

What you need for this book

To be able to smoothly follow through the chapters, you will need the following pieces of software:

  • TensorFlow 2.0 or higher
  • Matplotlib 3.0 or higher
  • Scikit-learn 0.18.1 or higher
  • NumPy 1.15 or higher

The hardware specifications are as follows:

  • Either 32-bit or 64-bit architecture
  • 2+ GHz CPU
  • 4 GB RAM
  • At least 10 GB of hard disk space available

Downloading the example code

You can download the example code files for this book from your account at www.packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at http://www.packt.com.
  2. Select the Support tab.
  3. Click on Code Downloads.
  4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR / 7-Zip for Windows
  • Zipeg / iZip / UnRarX for Mac
  • 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Deep-Learning-with-TensorFlow-2-and-Keras. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here:

https://static.packt-cdn.com/downloads/9781838823412_ColorImages.pdf

Conventions

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In addition, we load the true labels into Y_train and Y_test respectively and perform a one-hot encoding on them."

A block of code is set as follows:

from TensorFlow.keras.models import Sequential
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='random_uniform'))

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

model = Sequential()
model.add(Dense(NB_CLASSES, input_shape=(RESHAPED,)))
model.add(Activation('softmax'))
model.summary()

Any command-line input or output is written as follows:

pip install quiver_engine

Bold: Indicates a new term and important word or words that you see on the screen. For example, in menus or dialog boxes, appear in the text like this: "Our simple net started with an accuracy of 92.22%, which means that about eight handwritten characters out of 100 are not correctly recognized."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image