Introduces and then uses TensorFlow 2 and Keras right from the start
Teaches key machine and deep learning techniques
Understand the fundamentals of deep learning and machine learning through clear explanations and extensive code samples
Description
Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available.
TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before.
This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML.
Who is this book for?
This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.
What you will learn
Build machine learning and deep learning systems with TensorFlow 2 and the Keras API
Use Regression analysis, the most popular approach to machine learning
Understand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiers
Use GANs (generative adversarial networks) to create new data that fits with existing patterns
Discover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret another
Apply deep learning to natural human language and interpret natural language texts to produce an appropriate response
Train your models on the cloud and put TF to work in real environments
Explore how Google tools can automate simple ML workflows without the need for complex modeling
I started reading the book few weeks ago. I must say it is lovely and nicely written. It is easier for to read it after being in touch with Keras, fastai(build on top pytorch). Of course, with some machine learning background things can go smoothly. My recommandation would be to dig in well the first chapter as it has the base concepts of machine learning. I do recommend it! And I love it!
Amazon Verified review
seda cavdarogluFeb 19, 2020
5
I really liked this book which covers all modern Deep Learning concepts with practical applications based on Tensorflow 2. The chapters are clear and easy to follow, but their content is always valuable. I suggest this book to everyone who wants to start her journey in Deep Learning. It's worth all pennies and brings an excellent reference to young and seasoned practicioners.
Amazon Verified review
Kay TDec 18, 2020
5
This is a very well written, comprehensive book on deep learning as a technique to solve various machine learning problems. Its outline is quite thorough. The content will definitely remain relevant for a long time. The three authors are recognized as leading authorities in TensorFlow. The content and coverage are definitely timely and well-conceived. What I like about this book is the coverage for the basics. If you have limited understanding or just start with deep learning, the first two chapters teach you enough of background for you to move into the core of deep learning techniques, starting with regression and classification, and then the more complicated model architectures such as CNN, RNN and GAN.This book is very well balanced in terms of topic coverage. The first two chapters enable you to grasp the fundamentals of deep learning and TensorFlow 2.X semantics using the tf.keras API. You will find all the code and examples to be very practical and with well articulated explanations. If you are looking for a comprehensive guide on deep learning with practical examples, then this book is the right choice.
Amazon Verified review
MarukoFeb 26, 2020
5
Probabilmente il miglior libro in circolazione sull'argomento.Vale ogni centesimo pagato.
Amazon Verified review
@drakpzFeb 15, 2020
5
The key is in the book’s title: flow. Yes, that’s my very own (100% bio/natural ;-) ) neural network eventually got to when trying to concisely describe this book. Given the non-triviality of the topics that the authors wrote about, that alone is a remarkable outcome IMHO. There’s a subtle though absolutely pragmatic approach in every chapter that guides the reader’s reasoning to a double win: grasping the inner value of the core concepts and quickly gaining real world examples (through code). I also found the vast majority of chapters to be almost ‘self consistent’: although some cornerstones are required (and thoroughly dealt with in the first few chapters) you’ll find yourself jumping back straight to, say, GANs or AutoML focused chapters for future reference or deeper dives. The ‘math focused’ chapter is an added bonus which, although not stricty necessary for the book’s mission, deserves its own credit and will give you some extra ‘Ah!’ moments.
Antonio Gulli has a passion for establishing and managing global technological talent for innovation and execution. His core expertise is in cloud computing, deep learning, and search engines. Currently, Antonio works for Google in the Cloud Office of the CTO in Zurich, working on Search, Cloud Infra, Sovereignty, and Conversational AI.
Amita Kapoor, a seasoned expert in Artificial Intelligence, serves as the Chief Artificial Intelligence Officer at TIPZ AI, bringing over 25 years of experience in AI, data science, and neuroscience. Her consultancy, NePeur, stands testament to her leadership in applying AI across diverse industries, enhancing operational efficiency and business intelligence. Amita is also a devoted board member of Neuromatch Academy, where she plays a crucial role in making neuroscience and deep learning education accessible to all. Holding a PhD from the University of Delhi, she has dedicated her career to education, authoring numerous articles and papers, and creating impactful online classes. Her significant contributions extend to pioneering projects in intelligent vehicle fleet management, home surveillance through AI-powered face detection, and robust data anonymization solutions. Connect with Amita on LinkedIn.
Sujit Pal is a Technology Research Director at Elsevier Labs, an advanced technology group within the Reed-Elsevier Group of companies. His interests include semantic search, natural language processing, machine learning, and deep learning. At Elsevier, he has worked on several initiatives involving search quality measurement and improvement, image classification and duplicate detection, and annotation and ontology development for medical and scientific corpora.
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.