Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Deep Learning with TensorFlow 2 and Keras
Deep Learning with TensorFlow 2 and Keras

Deep Learning with TensorFlow 2 and Keras: Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API , Second Edition

Arrow left icon
Profile Icon Antonio Gulli Profile Icon Dr. Amita Kapoor Profile Icon Sujit Pal
Arrow right icon
$43.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (26 Ratings)
Paperback Dec 2019 646 pages 2nd Edition
eBook
$9.99 $29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Antonio Gulli Profile Icon Dr. Amita Kapoor Profile Icon Sujit Pal
Arrow right icon
$43.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (26 Ratings)
Paperback Dec 2019 646 pages 2nd Edition
eBook
$9.99 $29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$9.99 $29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Deep Learning with TensorFlow 2 and Keras

TensorFlow 1.x and 2.x

The intent of this chapter is to explain the differences between TensorFlow 1.x and TensorFlow 2.0. We'll start by reviewing the traditional programming paradigm for 1.x and then we'll move on to all the new features and paradigms available in 2.x.

Understanding TensorFlow 1.x

It is generally the tradition that the first program one learns to write in any computer language is "hello world." We maintain the convention in this book! Let's begin with a Hello World program:

import tensorflow as tf
message = tf.constant('Welcome to the exciting world of Deep Neural Networks!')
with tf.Session() as sess:
    print(sess.run(message).decode())

Let us go in depth into this simple code. The first line imports tensorflow. The second line defines the message using tf.constant. The third line defines the Session() using with, and the fourth runs the session using run(). Note that this tells us that the result is a "byte string." In order to remove string quotes and b (for byte) we use the method decode().

TensorFlow 1.x computational graph program structure

TensorFlow 1.x is unlike other programming languages. We first need to build a blueprint of whatever neural network we want...

Understanding TensorFlow 2.x

As discussed, TensorFlow 2.x recommends using a high-level API such as tf.keras, but leaves low-level APIs typical of TensorFlow 1.x for when there is a need to have more control on internal details. tf.keras and TensorFlow 2.x come with some great benefits. Let's review them.

Eager execution

TensorFlow 1.x defines static computational graphs. This type of declarative programming might be confusing for many people. However, Python is typically more dynamic. So, following the Python spirit, PyTorch, another popular deep learning package, defines things in a more imperative and dynamic way: you still have a graph, but you can define, change, and execute nodes on-the-fly, with no special session interfaces or placeholders. This is what is called eager execution, meaning that the model definitions are dynamic, and the execution is immediate. Graphs and sessions should be considered as implementation details.

Both PyTorch and TensorFlow 2 styles...

The TensorFlow 2.x ecosystem

Today, TensorFlow 2.x is a rich learning ecosystem where, in addition to the core learning engine, there is a large collection of tools that can be freely used. In particular:

Keras or tf.keras?

Another legitimate question is whether you should use Keras with TensorFlow as a backend or, instead, use the APIs in tf.keras directly available in TensorFlow. Note that there is not a 1:1 correspondence between Keras and tf.keras. Many endpoints in tf.keras are not implemented in Keras and tf.Keras does not support multiple backends as Keras. So, Keras or tf.keras? My suggestion is the second option rather than the first one. tf.keras has multiple advantages over Keras, consisting of TensorFlow enhancements discussed in this chapter (eager execution; native support for distributed training, including training on TPUs; and support for the TensorFlow SavedModel exchange format). However, the first option is still the most relevant one if you plan to write highly portable code that can run on multiple backends, including Google TensorFlow, Microsoft CNTK, Amazon MXnet, and Theano. Note that Keras is an independent open source project, and its development is not dependent...

Summary

TensorFlow 2.0 is a rich development ecosystem composed of two main parts: Training and Serving. Training consists of a set of libraries for dealing with datasets (tf.data), a set of libraries for building models, including high-level libraries (tf.Keras and Estimators), low-level libraries (tf.*), and a collection of pretrained models (tf.Hub), which will be discussed in Chapter 5, Advanced Convolutional Neural Networks. Training can happen on CPUs, GPUs, and TPUs via distribution strategies and the result can be saved using the appropriate libraries. Serving can happen on multiple platforms, including on-prem, cloud, Android, iOS, Raspberry Pi, any browser supporting JavaScript, and Node.js. Many language bindings are supported, including Python, C, C#, Java, Swift, R, and others. The following diagram summarizes the architecture of TensorFlow 2.0 as discussed in this chapter:

Figure 6: Summary of TensorFlow 2.0 architecture

  • tf.data can be used to load...
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Introduces and then uses TensorFlow 2 and Keras right from the start
  • Teaches key machine and deep learning techniques
  • Understand the fundamentals of deep learning and machine learning through clear explanations and extensive code samples

Description

Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML.

Who is this book for?

This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.

What you will learn

  • Build machine learning and deep learning systems with TensorFlow 2 and the Keras API
  • Use Regression analysis, the most popular approach to machine learning
  • Understand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiers
  • Use GANs (generative adversarial networks) to create new data that fits with existing patterns
  • Discover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret another
  • Apply deep learning to natural human language and interpret natural language texts to produce an appropriate response
  • Train your models on the cloud and put TF to work in real environments
  • Explore how Google tools can automate simple ML workflows without the need for complex modeling
Estimated delivery fee Deliver to Chile

Standard delivery 10 - 13 business days

$19.95

Premium delivery 3 - 6 business days

$40.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 27, 2019
Length: 646 pages
Edition : 2nd
Language : English
ISBN-13 : 9781838823412
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Chile

Standard delivery 10 - 13 business days

$19.95

Premium delivery 3 - 6 business days

$40.95
(Includes tracking information)

Product Details

Publication date : Dec 27, 2019
Length: 646 pages
Edition : 2nd
Language : English
ISBN-13 : 9781838823412
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 147.97
Python Machine Learning
$54.99
Advanced Deep Learning with Python
$48.99
Deep Learning with TensorFlow 2 and Keras
$43.99
Total $ 147.97 Stars icon
Banner background image

Table of Contents

18 Chapters
Neural Network Foundations with TensorFlow 2.0 Chevron down icon Chevron up icon
TensorFlow 1.x and 2.x Chevron down icon Chevron up icon
Regression Chevron down icon Chevron up icon
Convolutional Neural Networks Chevron down icon Chevron up icon
Advanced Convolutional Neural Networks Chevron down icon Chevron up icon
Generative Adversarial Networks Chevron down icon Chevron up icon
Word Embeddings Chevron down icon Chevron up icon
Recurrent Neural Networks Chevron down icon Chevron up icon
Autoencoders Chevron down icon Chevron up icon
Unsupervised Learning Chevron down icon Chevron up icon
Reinforcement Learning Chevron down icon Chevron up icon
TensorFlow and Cloud Chevron down icon Chevron up icon
TensorFlow for Mobile and IoT and TensorFlow.js Chevron down icon Chevron up icon
An introduction to AutoML Chevron down icon Chevron up icon
The Math Behind Deep Learning Chevron down icon Chevron up icon
Tensor Processing Unit Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(26 Ratings)
5 star 76.9%
4 star 3.8%
3 star 0%
2 star 11.5%
1 star 7.7%
Filter icon Filter
Top Reviews

Filter reviews by




Ana Maria Simionovici Apr 06, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I started reading the book few weeks ago. I must say it is lovely and nicely written. It is easier for to read it after being in touch with Keras, fastai(build on top pytorch). Of course, with some machine learning background things can go smoothly. My recommandation would be to dig in well the first chapter as it has the base concepts of machine learning. I do recommend it! And I love it!
Amazon Verified review Amazon
seda cavdaroglu Feb 19, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I really liked this book which covers all modern Deep Learning concepts with practical applications based on Tensorflow 2. The chapters are clear and easy to follow, but their content is always valuable. I suggest this book to everyone who wants to start her journey in Deep Learning. It's worth all pennies and brings an excellent reference to young and seasoned practicioners.
Amazon Verified review Amazon
Kay T Dec 18, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is a very well written, comprehensive book on deep learning as a technique to solve various machine learning problems. Its outline is quite thorough. The content will definitely remain relevant for a long time. The three authors are recognized as leading authorities in TensorFlow. The content and coverage are definitely timely and well-conceived. What I like about this book is the coverage for the basics. If you have limited understanding or just start with deep learning, the first two chapters teach you enough of background for you to move into the core of deep learning techniques, starting with regression and classification, and then the more complicated model architectures such as CNN, RNN and GAN.This book is very well balanced in terms of topic coverage. The first two chapters enable you to grasp the fundamentals of deep learning and TensorFlow 2.X semantics using the tf.keras API. You will find all the code and examples to be very practical and with well articulated explanations. If you are looking for a comprehensive guide on deep learning with practical examples, then this book is the right choice.
Amazon Verified review Amazon
Maruko Feb 26, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Probabilmente il miglior libro in circolazione sull'argomento.Vale ogni centesimo pagato.
Amazon Verified review Amazon
@drakpz Feb 15, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The key is in the book’s title: flow. Yes, that’s my very own (100% bio/natural ;-) ) neural network eventually got to when trying to concisely describe this book. Given the non-triviality of the topics that the authors wrote about, that alone is a remarkable outcome IMHO. There’s a subtle though absolutely pragmatic approach in every chapter that guides the reader’s reasoning to a double win: grasping the inner value of the core concepts and quickly gaining real world examples (through code). I also found the vast majority of chapters to be almost ‘self consistent’: although some cornerstones are required (and thoroughly dealt with in the first few chapters) you’ll find yourself jumping back straight to, say, GANs or AutoML focused chapters for future reference or deeper dives. The ‘math focused’ chapter is an added bonus which, although not stricty necessary for the book’s mission, deserves its own credit and will give you some extra ‘Ah!’ moments.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela