Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with Google Cloud Platform

You're reading from   Data Engineering with Google Cloud Platform A practical guide to operationalizing scalable data analytics systems on GCP

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781800561328
Length 440 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Adi Wijaya Adi Wijaya
Author Profile Icon Adi Wijaya
Adi Wijaya
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Data Engineering with GCP
2. Chapter 1: Fundamentals of Data Engineering FREE CHAPTER 3. Chapter 2: Big Data Capabilities on GCP 4. Section 2: Building Solutions with GCP Components
5. Chapter 3: Building a Data Warehouse in BigQuery 6. Chapter 4: Building Orchestration for Batch Data Loading Using Cloud Composer 7. Chapter 5: Building a Data Lake Using Dataproc 8. Chapter 6: Processing Streaming Data with Pub/Sub and Dataflow 9. Chapter 7: Visualizing Data for Making Data-Driven Decisions with Data Studio 10. Chapter 8: Building Machine Learning Solutions on Google Cloud Platform 11. Section 3: Key Strategies for Architecting Top-Notch Data Pipelines
12. Chapter 9: User and Project Management in GCP 13. Chapter 10: Cost Strategy in GCP 14. Chapter 11: CI/CD on Google Cloud Platform for Data Engineers 15. Chapter 12: Boosting Your Confidence as a Data Engineer 16. Other Books You May Enjoy

Summary 

This chapter covered one component of GCP that allows you to build a data lake, called Dataproc. As we've learned in this chapter, learning about Dataproc means learning about Hadoop. We learned about and practiced the core and most popular Hadoop components, HDFS and Spark. 

By combining the nature of Hadoop with all the benefits of using the cloud, we also learned about new concepts. The Hadoop ephemeral cluster is relatively new and is only possible because of cloud technology. In a traditional on-premises Hadoop cluster, this highly efficient concept is never an option.  

From the perspective of a data engineer working on GCP, using Hadoop or Dataproc is optional. Similar functionality is doable using full serverless components on GCP; for example, use GCS and BigQuery as storage rather than HDFS and use Dataflow for processing unstructured data rather than Spark. But the popularity of Spark is one of the main reasons for people using Dataproc...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image