Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Supervised Learning Workshop

You're reading from   The Supervised Learning Workshop Predict outcomes from data by building your own powerful predictive models with machine learning in Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781800209046
Length 532 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Blaine Bateman Blaine Bateman
Author Profile Icon Blaine Bateman
Blaine Bateman
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Overfitting and Underfitting

Let's say we fit a supervised learning algorithm to our data and subsequently use the model to perform a prediction on a hold-out validation set. The performance of this model will be considered to be good based on how well it generalizes, that is, how well it makes predictions for data points in an independent validation dataset.

Sometimes, we find that the model is not able to make accurate predictions and gives poor performance on the validation data. This poor performance can be the result of a model that is too simple to model the data appropriately, or a model that is too complex to generalize to the validation dataset. In the former case, the model has a high bias and results in underfitting, while, in the latter case, the model has a high variance and results in overfitting.

Bias

The bias in the prediction of a machine learning model represents the difference between the predicted target value and the true target value of a data point...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image