Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 recipes to build intelligent machine learning systems with the power of Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789131680
Length 422 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest-Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow 12. Other Books You May Enjoy

Introduction

Of all the machine learning algorithms we have considered thus far, none have considered data as a sequence. To take sequence data into account, we extend neural networks that store outputs from prior iterations. This type of neural network is called an RNN. Consider the fully connected network formulation:

Here, the weights are given by A multiplied by the input layer, x, and then run through an activation function, , which gives the output layer, y.

If we have a sequence of input data, , we can adapt the fully connected layer to take prior inputs into account, as follows:

On top of this recurrent iteration to get the next input, we want to get the probability distribution output, as follows:

Once we have a full sequence output, , we can consider the target as a number or category by just considering the last output. See the following diagram for how a general...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image