Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Geospatial Development - Second Edition

You're reading from   Python Geospatial Development - Second Edition If you're experienced in Python here's an opportunity to get deep into Geospatial development, linking data to global locations. No prior knowledge required ‚Äì this book takes you through it all, step by step.

Arrow left icon
Product type Paperback
Published in May 2013
Publisher Packt
ISBN-13 9781782161523
Length 508 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Erik Westra Erik Westra
Author Profile Icon Erik Westra
Erik Westra
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Python Geospatial Development
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Geospatial Development Using Python FREE CHAPTER 2. GIS 3. Python Libraries for Geospatial Development 4. Sources of Geospatial Data 5. Working with Geospatial Data in Python 6. GIS in the Database 7. Working with Spatial Data 8. Using Python and Mapnik to Generate Maps 9. Putting It All Together – a Complete Mapping System 10. ShapeEditor – Implementing List View, Import, and Export 11. ShapeEditor – Selecting and Editing Features Index

Representing and storing geospatial data


While geospatial data is often supplied in the form of vector-format files such as shapefiles, there are situations where shapefiles are unsuitable or inefficient. One such situation is where you need to take geospatial data from one library and use it in a different library. For example, imagine that you have read a set of geometries out of a shapefile and want to store them in a database, or work with them using the shapely library. Because all the different Python libraries use their own private classes to represent geospatial data, you can't just take an OGR Geometry object and pass it to shapely, or use a GDAL SpatialReference object to define the datum and projection to use for data stored in a database.

In these situations, you need to have an independent format for representing and storing geospatial data that isn't limited to just one particular Python library. This format, the lingua franca for vector-format geospatial data, is called Well...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image