Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python for Finance

You're reading from   Python for Finance Apply powerful finance models and quantitative analysis with Python

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher
ISBN-13 9781787125698
Length 586 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Yuxing Yan Yuxing Yan
Author Profile Icon Yuxing Yan
Yuxing Yan
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Python Basics FREE CHAPTER 2. Introduction to Python Modules 3. Time Value of Money 4. Sources of Data 5. Bond and Stock Valuation 6. Capital Asset Pricing Model 7. Multifactor Models and Performance Measures 8. Time-Series Analysis 9. Portfolio Theory 10. Options and Futures 11. Value at Risk 12. Monte Carlo Simulation 13. Credit Risk Analysis 14. Exotic Options 15. Volatility, Implied Volatility, ARCH, and GARCH Index

What you need for this book

Here, we use several concrete examples to show what a reader could achieve after going through this book carefully.

First, after reading the first two chapters, a reader/student should be able to use Python to calculate the present value, future value, present value of annuity, IRR (internal rate of return), and many other financial formulae. In other words, we could use Python as a free ordinary calculator to solve many finance problems. Second, after the first three chapters, a reader/student or a finance instructor could build a free financial calculator, that is, combine a few dozen small Python programs into a big Python program. This big program behaves just like any other module written by others. Third, readers learn how to write Python programs to download and process financial data from various public data sources, such as Yahoo! Finance, Google Finance, Federal Reserve Data Library, and Prof. French's Data Library.

Fourth, readers will understand basic concepts associated with modules, which are packages written by experts, other users, or us, for specific purposes. Fifth, after understanding the Matplotlib module, readers can produce various graphs. For instance, readers could use graphs to demonstrate payoff/profit outcomes based on various trading strategies by combining the underlying stocks and options. Sixth, readers will be able to download IBM's daily price, the S&P 500 index price, and data from Yahoo! Finance and estimate its market risk (beta) by applying CAPM. They will also be able to form a portfolio with different securities, such as risk-free assets, bonds, and stocks. Then, they can optimize their portfolios by applying Markowitz's mean-variance model. In addition, readers will know how to estimate the VaR of their portfolios.

Seventh, a reader should be able to price European and American options by applying both the Black-Scholes-Merton option model for European options only, and the Monte Carlo simulation for both European and American options. Last but not least, readers will learn several ways to measure volatility. In particular, they will learn how to use AutoRegressive Conditional Heteroskedasticity (ARCH) and Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image