As we discussed in the Value function approximation section, we are training the network online, as the agent receives stream of experiences from the environment. But the environment is usually sequential, and consecutive experiences might not differ much. For example, imagine that the agent is a car, which is currently sliding downhill. While doing so, it receives consistent feedback that the speed increases. If we feed the network with such unified training data, there is a chance that it will start dominating all other experiences. The network might "forget" previous situations and the performance would decrease (this is a disadvantage of some neural networks). We can solve this issue with experience replay. As the environment interaction goes, we'll store a sliding window of the latest n interactions: (state st-1, action at-1, reward rt, state...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand