Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

What you need for this book

The code examples in this book should work on most modern operating systems. For all chapters, Python > 3.5.0 and pip3 is required. You can download Python 3.5.x from https://www.python.org/downloads/. On this webpage, you can find installers for Windows and Mac OS X as well as source archives for Linux, Unix, and Mac OS X. You can find instructions for installing and using python for various operating systems on this webpage: https://docs.python.org/3/using/index.html. Most of the time, we need to run the following command with admin privileges to install various python libraries needed for the content of the book:

$ pip3 install <some library>

The following is a list of python libraries used for the examples:

  • numpy
  • scipy
  • pandas
  • matplotlib
  • ipython
  • jupyter
  • notebook
  • readline
  • scikit-learn
  • rpy2
  • Quandl
  • statsmodels
  • feedparser
  • beautifulsoup4
  • lxml
  • numexpr
  • tables
  • openpyxl
  • xlsxwriter
  • xlrd
  • pony
  • dataset
  • pymongo
  • redis
  • python3-memcache
  • cassandra-driver
  • sqlalchemy
  • nltk
  • networkx
  • theanets
  • nose_parameterized
  • pydot2
  • deap
  • JPype1
  • gprof2dot
  • line_profiler
  • cython
  • cytoolz
  • joblib
  • bottleneck
  • jug
  • mpi4py

Apart from python libraries we also need the following software:

  • Redis server
  • Cassandra
  • Java 8
  • Graphviz
  • Octave
  • R
  • SWIG
  • PCRE
  • Boost
  • gfortran
  • MPI

Usually, the latest version available should work for the above mentioned libraries and software.

Note

Some of the software listed are used for a single example; therefore, please check first whether the example is relevant for you before installing the software.

To uninstall Python packages installed with pip, use the following command:

   $ pip3 uninstall <some library>
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime