The top data science tools and skills
Drew Conway is famous for his data science Venn diagram from 2010, postulating that data science is a combination of hacking skills (programming/coding), math and statistics, and domain expertise. I'd also add business acumen and communications skills to the mix, and state that sometimes, domain expertise isn't really required upfront. To utilize data science effectively, we should know how to program, know some math/statistics, know how to solve business problems with data science, and know how to communicate results.
Python
In the field of data science, Python is king. It's the main programming language and tool for carrying out data science. This is in large part due to network effects, meaning that the more people that use Python, the better a tool Python becomes. As the Python network and technology grows, it snowballs and becomes self-reinforcing. The network effects arise due to the large number of libraries and packages, related uses of Python (for example, DevOps, cloud services, and serving websites), the large and growing community around Python, and Python's ease of use. Python and the Python-based data science libraries and packages are free and open source, unlike many GUI solutions (like Excel or RapidMiner).
Python is a very easy-to-learn language and is easy to use. This is in large part due to the syntax of Python – there aren't a lot of brackets to keep track of (like in Java), and the overall style is clean and simple. The core Python team also published an official style guide, PEP 8, which states that Python is meant to be easy to read (and hence, easy to write). The ease of learning and using Python means more people can join the Python community faster, growing the network.
Since Python has been around a while, there has been sufficient time for people to build up convenient libraries to take care of tasks that used to be tedious and involve lots of work. An example is the Seaborn package for plotting, which we will cover in Chapter 5, Exploratory Data Analysis and Visualization. In the early 2000s, the primary way to make plots in Python was with the Matplotlib package, which can be a bit painstaking to use at times. Seaborn was created around 2013 and abstracts several lines of Matplotlib code into single commands. This has been the case across the board for Python in data science. We now have packages and libraries to do all sorts of things, like AutoML (H2O, AutoKeras), plotting (Seaborn, Plotly), interacting with the cloud via software development kits or SDKs (Boto3 for AWS, Microsoft's Azure SDKs), and more. Contrast this with another top data science language, R, which does not have quite as strong network effects. AWS does not offer an official R SDK, for example, although there is an unofficial R SDK.
Similar to the variety of packages and libraries are all the ways to use Python. This includes the many distributions for installing Python, like Anaconda (which we'll use in this book). These Python distributions make installing and managing Python libraries easy and convenient, even across a wide variety of operating systems. After installing Python, there are several ways to write and interact with Python code in order to do data science. This includes the notorious Jupyter Notebook, which was first created exclusively for Python (but now can be used with a plethora of programming languages). There are many choices for integrated development environments (IDEs) for writing code; in fact, we can even use the RStudio IDE to write Python code. Many cloud services also make it easy to use Python within their platforms.
Lastly, the large community makes learning Python and writing Python code much easier. There is a huge number of Python tutorials on the web, thousands of books involving Python, and you can easily get help from the community on Stack Overflow and other specialized online support communities. We can see from the 2020 Kaggle data scientist survey results below in Figure 1.1 that Python was found to be the most-used language for machine learning and data science. In fact, I've used it to create most of the figures in this chapter! Although Python has some shortcomings, it has enormous momentum as the main data science programming language, and this doesn't appear to be changing any time soon.
Figure 1.1: The results from the 2020 Kaggle data science survey show Python is the top programming language used for data science, followed by SQL, then R, then a host of other languages.
Other programming languages
Many other programming languages for data science exist, and sometimes they are best to use for certain applications. Much like choosing the right tool to repair a car or bicycle, choosing the correct programming tool can make life much easier. One thing to keep in mind is that programming languages can often be intermixed. For example, we can run R code from within Python, or vice versa.
Speaking of R, it's the next-biggest general-purpose programming language for data science after Python. The R language has been around for about as long as Python, but originated as a statistics-focused language rather than a general-purpose programming language like Python. This means with R, it is often easier to implement classic statistical methods, like t-tests, ANOVA, and other statistical tests. The R community is very welcoming and also large, and any data scientist should really know the basics of how to use R. However, we can see that the Python community is larger than R's community from the number of Stack Overflow posts shown below in Figure 1.2 – Python has about 10 times more posts than R. Programming in R is enjoyable, and there are several libraries that make common data science tasks easy.
Figure 1.2: The number of Stack Overflow questions by programming language over time. The y-axis is a log scale since the number of posts is so different between less popular languages like Julia and more popular languages like Python and R.
Another key programming language in data science is SQL. We can see from the Kaggle machine learning and data science survey results (Figure 1.1) that SQL is actually the second most-used language after Python. SQL has been around for decades and is necessary for retrieving data from SQL databases in many situations. However, SQL is specialized for use with databases, and can't be used for more general-purpose tasks like Python and R can. For example, you can't easily serve a website with SQL or scrape data from the web with SQL, but you can with R and Python.
Scala is another programming language sometimes used for data science and is most often used in conjunction with Spark, which is a big data processing and analytics engine. Another language to keep on your radar is Julia. This is a relatively new language but is gaining popularity rapidly. The goal of Julia is to overcome Python's shortcomings while still making it an easy-to-learn and easy-to-use language. Even if Julia does eventually replace Python as the top data science language, it probably won't be for several years or decades. Julia runs calculations faster than Python, runs in parallel by default, and is useful for large-scale simulations such as global climate simulations. However, Julia lacks the robust infrastructure, network, and community that Python has.
Several other languages can be used for data science as well, like JavaScript, Go, Haskell, and others. All of these programming languages are free and open source, like Python. However, all of these other languages lack the large data science ecosystems that Python and R have, and some of them are difficult to learn. For certain specialized tasks, these other languages can be great. But in general, it's best to keep it simple at first and stick with Python.
GUIs and platforms
There are a plethora of graphical user interfaces (GUIs) and data science or analytics platforms. In my opinion, the biggest GUI used for data science is Microsoft Excel. It's been around for decades and makes analyzing data simple. However, as with all GUIs, Excel lacks flexibility. For example, you can't create a boxplot in Excel with a log scale on the y-axis (we will cover boxplots and log scales in Chapter 5, Exploratory Data Analysis and Visualization). This is always the trade-off between GUIs and programming languages – with programming languages, you have ultimate flexibility, but this usually requires more work. With GUIs, it can be easier to accomplish the same thing as with a programming language, but one often lacks the flexibility to customize techniques and results. Some GUIs like Excel also have limits to the amount of data they can handle – for example, Excel can currently only handle about 1 million rows per worksheet.
Excel is essentially a general-purpose data analytics GUI. Others have created similar GUIs, but more focused on data science or analytics tasks. For example, Alteryx, RapidMiner, and SAS are a few. These aim to incorporate statistical and/or data science processes within a GUI in order to make these tasks easier and faster to accomplish. However, we again trade customizability for ease of use. Most of these GUI solutions also cost money on a subscription basis, which is another drawback.
The last types of GUIs related to data science are visualization GUIs. These include tools like Tableau and QlikView. Although these GUIs can do a few other analytics and data science tasks, they are focused on creating interactive visualizations.
Many of the GUI tools have capabilities to interface with Python or R scripts, which enhances their flexibility. There is even a Python-based data science GUI called "Orange," which allows one to create data science workflows with a GUI.
Cloud tools
As with many things in technology today, some parts of data science are moving to the cloud. The cloud is most useful when we are working with big datasets or need to be able to rapidly scale up. Some of the major cloud providers for data science include:
- Amazon Web Services (AWS) (general purpose)
- Google Cloud Platform (GCP) (general purpose)
- Microsoft Azure (general purpose)
- IBM (general purpose)
- Databricks (data science and AI platform)
- Snowflake (data warehousing)
We can see from Kaggle's 2020 machine learning and data science survey results in Figure 1.3 that AWS, GCP, and Azure seem to be the top cloud resources used by data scientists.
Figure 1.3: The results from the 2020 Kaggle data science survey showing the most-used cloud services
Many of these cloud services have software development kits (SDKs) that allow one to write code to control cloud resources. Almost all cloud services have a Python SDK, as well as SDKs in other languages. This makes it easy to leverage huge computing resources in a reproducible way. We can write Python code to provision cloud resources (called infrastructure as code, or IaC), run big data calculations, assemble a report, and integrate machine learning models into a production product. Interacting with cloud resources via SDKs is an advanced topic, and one should ideally learn the basics of Python and data science before trying to leverage the cloud to run data science workflows. Even when using the cloud, it's best to prototype and test Python code locally (if possible) before deploying it to the cloud and spending resources.
Cloud tools can also be used with GUIs, such as Microsoft's Azure Machine Learning Studio and AWS's SageMaker Studio. This makes it easy to use the cloud with big data for data science. However, one must still understand data science concepts, such as data cleaning caveats and hyperparameter tuning, in order to properly use data science cloud resources for data science. Not only that, but data science GUI platforms on the cloud can suffer from the same problems as running a local GUI on your machine – sometimes GUIs lack the flexibility to do exactly what you want.
Statistical methods and math
As we learned, data science was born out of statistics and computer science. A good understanding of some core statistical methods is a must for doing data science. Some of these essential statistical skills include:
- Exploratory analysis statistics (exploratory data analysis, or EDA), like statistical plotting and aggregate calculations such as quantiles
- Statistical tests and their principles, like p-values, chi-squared tests, t-tests, and ANOVA
- Machine learning modeling, including regression, classification, and clustering methods
- Probability and statistical distributions, like Gaussian and Poisson distributions
With statistical methods and models, we can do amazing things like predict future events and uncover hidden patterns in data. Uncovering these patterns can lead to valuable insights that can change the way businesses operate and improve the bottom line, or improve medical diagnoses among other things..
Although an extensive mathematics background is not required, it's helpful to have an analytical mindset. A data scientist's capabilities can be improved by understanding mathematical techniques such as:
- Geometry (for example, distance calculations like Euclidean distance)
- Discrete math (for calculating probabilities)
- Linear algebra (for neural networks and other machine learning methods)
- Calculus (for training/optimizing some models, especially neural networks)
Many of the more difficult aspects of these mathematical techniques are not required for doing the majority of data science. For example, knowing linear algebra and calculus is most useful for deep learning (neural networks) and computer vision, but not required for most data science work.
Collecting, organizing, and preparing data
Most data scientists spend somewhere between 25% and 75% of their time cleaning and preparing data, according to a 2016 Crowdflower survey and a 2018 Kaggle survey. However, anecdotal evidence suggests many data scientists spend 90% or more of their time cleaning and preparing data. This varies depending on how messy and disorganized the data is, but the fact of the matter is that most data is messy. For example, working with thousands of Excel spreadsheets with different formats and lots of quirks takes a long time to clean up. But loading a CSV file that's already been cleaned is nearly instantaneous. Data loading, cleaning, and organizing are sometimes called data munging or data wrangling (also sometimes referred to as data janitor work). This is often done with the pandas package in Python, which we'll learn about in Chapter 4, Loading and Wrangling Data with Pandas and NumPy.
Software development
Programming skills like Python are encompassed by software development, but there is another set of software development skills that are useful to have. This includes code versioning with tools like Git and GitHub, creating reproducible and scalable software products with technologies such as Docker and Kubernetes, and advanced programming techniques. Some people say data science is becoming more like software engineering, since it has started to involve more programming and deployment of machine learning models at scale in the cloud. Software development skills are always good to have as a data scientist, and some of these skills are required for many data science jobs, like knowing how to use Git and GitHub.
Business understanding and communication
Lastly, our data science products and results are useless if we can't communicate them to others. Communication often starts with understanding the problem and audience, which involves business acumen. If you know what risks and opportunities businesses face, then you can frame your data science work through that lens. Communication of results can then be accomplished with classic business tools like Microsoft PowerPoint, although other new tools such as Jupyter Notebook (with add-ons such as reveal.js) can be used to create more interactive presentations as well. Using a Jupyter Notebook to create a presentation allows one to actively demo Python or other code during the presentation, unlike classic presentation software.