Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenGL 4.0 Shading Language Cookbook

You're reading from   OpenGL 4.0 Shading Language Cookbook With over 60 recipes, this Cookbook will teach you both the elementary and finer points of the OpenGL Shading Language, and get you familiar with the specific features of GLSL 4.0. A totally practical, hands-on guide.

Arrow left icon
Product type Paperback
Published in Jul 2011
Publisher Packt
ISBN-13 9781849514767
Length 340 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (16) Chapters Close

OpenGL 4.0 Shading Language Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with GLSL 4.0 FREE CHAPTER 2. The Basics of GLSL Shaders 3. Lighting, Shading Effects, and Optimizations 4. Using Textures 5. Image Processing and Screen Space Techniques 6. Using Geometry and Tessellation Shaders 7. Shadows 8. Using Noise in Shaders 9. Animation and Particles Index

Discarding fragments to create a perforated look


Fragment shaders can make use of the discard keyword to "throw away" fragments. Use of this keyword causes the fragment shader to stop execution, without writing anything (including depth) to the output buffer. This provides a way to create holes in polygons without using blending. In fact, since fragments are completely discarded, there is no dependence on the order in which objects are drawn, saving us the trouble of doing any depth sorting that might have been necessary if blending was used.

In this recipe, we'll draw a teapot, and use the discard keyword to remove fragments selectively based on texture coordinates. The result will look like the following image:

Getting ready

The vertex position, normal, and texture coordinates must be provided to the vertex shader from the OpenGL application. The position should be provided at location 0, the normal at location 1, and the texture coordinates at location 2. As in previous examples, the lighting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image