Feature engineering plays a vital role in making machine learning algorithms work and, if carried out properly, it enhances the predictive ability of machine learning algorithms. In other words, feature engineering is the process of extracting existing features or creating new features from the raw data using domain knowledge, the context of the problem, or specialized techniques that result in more accurate predictive models. This is an activity where domain knowledge and creativity play a very important role. This is an important process, which can significantly improve the performance of our predictive models. The more context you have about a problem, the better your ability to create new and useful features. Basically, the feature engineering process converts the features into input values that algorithms can understand.
There are various ways of implementing...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand