Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning SciPy for Numerical and Scientific Computing Second Edition

You're reading from   Learning SciPy for Numerical and Scientific Computing Second Edition Quick solutions to complex numerical problems in physics, applied mathematics, and science with SciPy

Arrow left icon
Product type Paperback
Published in Feb 2015
Publisher Packt
ISBN-13 9781783987702
Length 188 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Toc

The array object

At this point, we are ready for a thorough study of all interesting attributes of ndarray for scientific computing purposes. We have already covered a few, such as dtype, shape, and size. Other useful attributes are ndim (to compute the number of dimensions in the array), real, and imag (to obtain the real and imaginary parts of the data, should this be formed by complex numbers) or flat (which creates a one-dimensional indexable iterator from the data).

For instance, if we desired to add all the values of an array together, we could use the flat attribute to run over all the elements sequentially, and accumulate all the values in a variable. A possible code to perform this task should look like the following code snippet (compare this code with the ndarray.sum() method, which will be explained in object calculation ahead):

>>> value=0; import scipy.misc; img=scipy.misc.lena()
>>> for item in img.flat: value+=item
>>> value

The output is shown as...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime