Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning PySpark

You're reading from   Learning PySpark Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786463708
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Denny Lee Denny Lee
Author Profile Icon Denny Lee
Denny Lee
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Understanding Spark FREE CHAPTER 2. Resilient Distributed Datasets 3. DataFrames 4. Prepare Data for Modeling 5. Introducing MLlib 6. Introducing the ML Package 7. GraphFrames 8. TensorFrames 9. Polyglot Persistence with Blaze 10. Structured Streaming 11. Packaging Spark Applications Index

Introducing GraphFrames


GraphFrames utilizes the power of Apache Spark DataFrames to support general graph processing. Specifically, the vertices and edges are represented by DataFrames allowing us to store arbitrary data with each vertex and edge. While GraphFrames is similar to Spark's GraphX library, there are some key differences, including:

  • GraphFrames leverage the performance optimizations and simplicity of the DataFrame API.

  • By using the DataFrame API, GraphFrames now have Python, Java, and Scala APIs. GraphX is only accessible through Scala; now all its algorithms are available in Python and Java.

  • Note, at the time of writing, there was a bug preventing GraphFrames from working with Python3.x, hence we will be using Python2.x.

At the time of writing, GraphFrames is on version 0.3 and available as a Spark package (http://spark-packages.org) at https://spark-packages.org/package/graphframes/graphframes.

Tip

For more information about GraphFrames, please refer to Introducing GraphFra mes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime