Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn Quantum Computing with Python and IBM Quantum Experience

You're reading from   Learn Quantum Computing with Python and IBM Quantum Experience A hands-on introduction to quantum computing and writing your own quantum programs with Python

Arrow left icon
Product type Paperback
Published in Sep 2020
Publisher Packt
ISBN-13 9781838981006
Length 510 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Robert Loredo Robert Loredo
Author Profile Icon Robert Loredo
Robert Loredo
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Tour of the IBM Quantum Experience (QX)
2. Chapter 1: Exploring the IBM Quantum Experience FREE CHAPTER 3. Chapter 2: Circuit Composer – Creating a Quantum Circuit 4. Chapter 3: Creating Quantum Circuits using Quantum Lab Notebooks 5. Section 2: Basics of Quantum Computing
6. Chapter 4: Understanding Basic Quantum Computing Principles 7. Chapter 5: Understanding the Quantum Bit (Qubit) 8. Chapter 6: Understanding Quantum Logic Gates 9. Section 3: Algorithms, Noise, and Other Strange Things in Quantum World
10. Chapter 7: Introducing Qiskit and its Elements 11. Chapter 8: Programming with Qiskit Terra 12. Chapter 9: Monitoring and Optimizing Quantum Circuits 13. Chapter 10: Executing Circuits Using Qiskit Aer 14. Chapter 11: Mitigating Quantum Errors Using Ignis 15. Chapter 12: Learning about Qiskit Aqua 16. Chapter 13: Understanding Quantum Algorithms 17. Chapter 14: Applying Quantum Algorithms 18. Assessments 19. Other Books You May Enjoy Appendix A: Resources

Summary

In this chapter, you learned about the Circuit Composer view and its many components. You created three circuits. The first one was an experiment that simulated a classic NOT gate. The second one was an experiment in which a circuit was created using the Hadamard gate, which leveraged superposition. You then viewed the results of the experiment.

The third one was a circuit in which you expanded on the second circuit in order to include your first multi-gate, that is, a CNOT gate. From here, you demonstrated entanglement.

You were also able to review your results on a histogram, which allows you to examine how both superposition and entanglement results map from your quantum circuit to the classical bit outputs, as well as how to read the probabilities based on the results.

This has provided you with the skills to experiment with other gates and see what effect each operation has on each qubit and what information might be determined or used based on the results of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime