Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Julia for Data Science

You're reading from   Julia for Data Science high-performance computing simplified

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785289699
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anshul Joshi Anshul Joshi
Author Profile Icon Anshul Joshi
Anshul Joshi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Groundwork – Julia's Environment 2. Data Munging FREE CHAPTER 3. Data Exploration 4. Deep Dive into Inferential Statistics 5. Making Sense of Data Using Visualization 6. Supervised Machine Learning 7. Unsupervised Machine Learning 8. Creating Ensemble Models 9. Time Series 10. Collaborative Filtering and Recommendation System 11. Introduction to Deep Learning

What is data munging?

Munging comes from the term "munge," which was coined by some students of Massachusetts Institute of Technology, USA. It is considered one of the most essential parts of the data science process; it involves collecting, aggregating, cleaning, and organizing the data to be consumed by the algorithms designed to make discoveries or to create models. This involves numerous steps, including extracting data from the data source and then parsing or transforming the data into a predefined data structure. Data munging is also referred to as data wrangling.

The data munging process

So what's the data munging process? As mentioned, data can be in any format and the data science process may require data from multiple sources. This data aggregation phase includes scraping it from websites, downloading thousands of .txt or .log files, or gathering the data from RDBMS or NoSQL data stores.

It is very rare to find data in a format that can be used directly by the data...

You have been reading a chapter from
Julia for Data Science
Published in: Sep 2016
Publisher: Packt
ISBN-13: 9781785289699
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image