Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Introduction to R for Business Intelligence

You're reading from   Introduction to R for Business Intelligence Profit optimization using data mining, data analysis, and Business Intelligence

Arrow left icon
Product type Paperback
Published in Aug 2016
Publisher Packt
ISBN-13 9781785280252
Length 228 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jay Gendron Jay Gendron
Author Profile Icon Jay Gendron
Jay Gendron
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Extract, Transform, and Load FREE CHAPTER 2. Data Cleaning 3. Exploratory Data Analysis 4. Linear Regression for Business 5. Data Mining with Cluster Analysis 6. Time Series Analysis 7. Visualizing the Datas Story 8. Web Dashboards with Shiny A. References
B. Other Helpful R Functions C. R Packages Used in the Book
D. R Code for Supporting Market Segment Business Case Calculations

Chapter 3. Exploratory Data Analysis

One way to learn new things is through discovery. Exploratory data analysis is a term attributed to the statistician John Tukey in a book of the same name (Tukey, 1977). Exploratory data analysis means examining a dataset to discover its underlying characteristics with an emphasis on visualization. It helps you during analysis design to determine if you should gather more data, suggest hypotheses to test, and identify models to develop. In this chapter, we will cover the following four topics related to exploratory data analysis:

  • Understanding exploratory data analysis
  • Analyzing a single data variable
  • Analyzing two variables together
  • Exploring multiple variables simultaneously

You will learn common techniques that statisticians and analysts use to characterize data. These include tabular and graphical methods to explore the dataset. There are many interesting things to discover in a dataset, but in business or science you are exploring to determine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime