Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

You're reading from   Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838826048
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tarek Amr Tarek Amr
Author Profile Icon Tarek Amr
Tarek Amr
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Supervised Learning
2. Introduction to Machine Learning FREE CHAPTER 3. Making Decisions with Trees 4. Making Decisions with Linear Equations 5. Preparing Your Data 6. Image Processing with Nearest Neighbors 7. Classifying Text Using Naive Bayes 8. Section 2: Advanced Supervised Learning
9. Neural Networks – Here Comes Deep Learning 10. Ensembles – When One Model Is Not Enough 11. The Y is as Important as the X 12. Imbalanced Learning – Not Even 1% Win the Lottery 13. Section 3: Unsupervised Learning and More
14. Clustering – Making Sense of Unlabeled Data 15. Anomaly Detection – Finding Outliers in Data 16. Recommender System – Getting to Know Their Taste 17. Other Books You May Enjoy

Using bagging regressors

We will go back to the Automobile dataset as we are going to use the bagging regressor this time. The bagging meta-estimator is very similar to random forest. It is built of multiple estimators, each one trained on a random subset of the data using a bootstrap sampling method. The key difference here is that although decision trees are used as the base estimators by default, any other estimator can be used as well. Out of curiosity, let's use the K-Nearest Neighbors (KNN) regressor as our base estimator this time. However, we need to prepare the data to suit the new regressor's needs.

Preparing a mixture of numerical and categorical features

It is recommended to put all features on the same scale when using distance-based algorithms such as KNN. Otherwise, the effect of the features with higher magnitudes on the distance metric will overshadow the other features. As we have a mixture of numerical and categorical features here...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image