Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Processing with Python

You're reading from   Hands-On Image Processing with Python Expert techniques for advanced image analysis and effective interpretation of image data

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343731
Length 492 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sandipan Dey Sandipan Dey
Author Profile Icon Sandipan Dey
Sandipan Dey
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
1. Getting Started with Image Processing 2. Sampling, Fourier Transform, and Convolution FREE CHAPTER 3. Convolution and Frequency Domain Filtering 4. Image Enhancement 5. Image Enhancement Using Derivatives 6. Morphological Image Processing 7. Extracting Image Features and Descriptors 8. Image Segmentation 9. Classical Machine Learning Methods in Image Processing 10. Deep Learning in Image Processing - Image Classification 11. Deep Learning in Image Processing - Object Detection, and more 12. Additional Problems in Image Processing 1. Other Books You May Enjoy Index

Summary


In this chapter, the recent advances in image processing with deep learning models were introduced. We started by discussing the basic concepts of deep learning, how it's different from traditional ML, and why we need it. Then CNNs were introduced as deep neural networks designed particularly to solve complex image processing and computer vision tasks. The CNN architecture with convolutional, pooling, and FC layers were discussed. Next, we introduced TensorFlow and Keras, two popular deep learning libraries in Python. We showed how test accuracy on the MNIST dataset for handwritten digits classification can be increased with CNNs, then the same using FC layers only. Finally, we discussed a few popular networks such as VGG-16/19, GoogleNet, and ResNet. Kera's VGG-16 model was trained on Kaggle's Dogs vs. Cats competition images and we showed how it performs on the validation image dataset with decent accuracy.

In the next chapter, we'll discuss how to solve more complex image processing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime