Summary
In our second application chapter, we learned how to simulate events in Python and got additional exposure to writing packages. We also saw how to write Python scripts that can be run from the command line, which we used to run our simulation of the login attempt data. Then, we performed some EDA on the simulated data to see whether we could figure out what would make hacker activity easy to spot.
This led us to zero in on the number of distinct usernames attempting to authenticate per IP address per hour, as well as the number of attempts and failure rates. Using these metrics, we were able to create a scatter plot, which appeared to show two distinct groups of points, along with some other points connecting the two groups; naturally, these represented the groups of valid users and the nefarious ones, with some of the hackers not being as obvious as others.
Finally, we set about creating rules that would flag the hacker IP addresses for their suspicious activity. First...