Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Google Machine Learning and Generative AI for Solutions Architects

You're reading from   Google Machine Learning and Generative AI for Solutions Architects ​Build efficient and scalable AI/ML solutions on Google Cloud

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781803245270
Length 552 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kieran Kavanagh Kieran Kavanagh
Author Profile Icon Kieran Kavanagh
Kieran Kavanagh
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1:The Basics
2. Chapter 1: AI/ML Concepts, Real-World Applications, and Challenges FREE CHAPTER 3. Chapter 2: Understanding the ML Model Development Life Cycle 4. Chapter 3: AI/ML Tooling and the Google Cloud AI/ML Landscape 5. Part 2:Diving in and building AI/ML solutions
6. Chapter 4: Utilizing Google Cloud’s High-Level AI Services 7. Chapter 5: Building Custom ML Models on Google Cloud 8. Chapter 6: Diving Deeper – Preparing and Processing Data for AI/ML Workloads on Google Cloud 9. Chapter 7: Feature Engineering and Dimensionality Reduction 10. Chapter 8: Hyperparameters and Optimization 11. Chapter 9: Neural Networks and Deep Learning 12. Chapter 10: Deploying, Monitoring, and Scaling in Production 13. Chapter 11: Machine Learning Engineering and MLOps with Google Cloud 14. Chapter 12: Bias, Explainability, Fairness, and Lineage 15. Chapter 13: ML Governance and the Google Cloud Architecture Framework 16. Chapter 14: Additional AI/ML Tools, Frameworks, and Considerations 17. Part 3:Generative AI
18. Chapter 15: Introduction to Generative AI 19. Chapter 16: Advanced Generative AI Concepts and Use Cases 20. Chapter 17: Generative AI on Google Cloud 21. Chapter 18: Bringing It All Together: Building ML Solutions with Google Cloud and Vertex AI 22. Index 23. Other Books You May Enjoy

Why MLOps is needed for deploying large-scale ML workloads

The most important aspect of MLOps is that it helps organizations develop ML models in a faster, more efficient, and reliable manner, and it allows data science teams to experiment and innovate while also meeting operational requirements.

We know by now that ML has become an essential component of many industries and sectors, providing invaluable insights and decision-making capabilities, but that deploying ML models, especially at scale, presents many challenges. Some of these are challenges that can only be solved by MLOps, and we dive into more detail on such challenges in this section, as well as providing examples of how MLOps helps to address them.

Before we dive in, I’m going to point out that the kinds of challenges we will discuss in this section actually apply to any industry that creates products at a large scale, whether those products are cars, safety pins, toys, or machine learning models.

I’...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image