Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science  with Python

You're reading from   Data Science with Python Combine Python with machine learning principles to discover hidden patterns in raw data

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781838552862
Length 426 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Rohan Chopra Rohan Chopra
Author Profile Icon Rohan Chopra
Rohan Chopra
Mohamed Noordeen Alaudeen Mohamed Noordeen Alaudeen
Author Profile Icon Mohamed Noordeen Alaudeen
Mohamed Noordeen Alaudeen
Aaron England Aaron England
Author Profile Icon Aaron England
Aaron England
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

About the Book 1. Introduction to Data Science and Data Pre-Processing FREE CHAPTER 2. Data Visualization 3. Introduction to Machine Learning via Scikit-Learn 4. Dimensionality Reduction and Unsupervised Learning 5. Mastering Structured Data 6. Decoding Images 7. Processing Human Language 8. Tips and Tricks of the Trade 1. Appendix

Chapter 8: Tips and Tricks of the Trade

Activity 21: Classifying Images using InceptionV3

Solution:

  1. Create functions to get images and labels. Here PATH variable contains the path to the training dataset.

    from PIL import Image

    def get_input(file):

        return Image.open(PATH+file)

    def get_output(file):

        class_label = file.split('.')[0]

        if class_label == 'dog': label_vector = [1,0]

        elif class_label == 'cat': label_vector = [0,1]

        return label_vector

  2. Set SIZE and CHANNELS. SIZE is the dimension of the square image input. CHANNELS is the number of channels in the training data images. There are 3 channels in a RGB image.

    SIZE = 200

    CHANNELS = 3

  3. Create a function to preprocess and augment images:

    def preprocess_input(image):

        

        # Data preprocessing

        image = image.resize((SIZE,SIZE))

        image = np.array(image).reshape(SIZE,SIZE,CHANNELS)

        

        # Normalize image

        image = image/255.0

        

        return image

  4. Finally, develop the generator that will generate the batches:

    import numpy as np

    def custom_image_generator(images, batch_size = 128):

        

        while True:

            # Randomly select images for the batch

            batch_images = np.random.choice(images, size = batch_size)

            batch_input = []

            batch_output = []

            

            # Read image, perform preprocessing and get labels

            for file in batch_images:

                # Function that reads and returns the image

                input_image = get_input(file)

                # Function that gets the label of the image

                label = get_output(file)

                # Function that pre-processes and augments the image

                image = preprocess_input(input_image)

     

                batch_input.append(image)

                batch_output.append(label)

     

            batch_x = np.array(batch_input)

            batch_y = np.array(batch_output)

     

            # Return a tuple of (images,labels) to feed the network

            yield(batch_x, batch_y)

  5. Next, we will read the validation data. Create a function to read the images and their labels:

    from tqdm import tqdm

    def get_data(files):

        data_image = []

        labels = []

        for image in tqdm(files):

            label_vector = get_output(image)

            

            img = Image.open(PATH + image)

            img = img.resize((SIZE,SIZE))

            

            labels.append(label_vector)

            img = np.asarray(img).reshape(SIZE,SIZE,CHANNELS)

            img = img/255.0

            data_image.append(img)

            

        data_x = np.array(data_image)

        data_y = np.array(labels)

            

        return (data_x, data_y)

  6. Read the validation files:

    import os

    files = os.listdir(PATH)

    random.shuffle(files)

    train = files[:7000]

    test = files[7000:]

    validation_data = get_data(test)

    7. Plot a few images from the dataset to see whether you loaded the files correctly:

    import matplotlib.pyplot as plt

    plt.figure(figsize=(20,10))

    columns = 5

    for i in range(columns):

        plt.subplot(5 / columns + 1, columns, i + 1)

        plt.imshow(validation_data[0][i])

    A random sample of the images is shown here:

    Figure 8.16: Sample images from the loaded dataset
    Figure 8.16: Sample images from the loaded dataset
  7. Load the Inception model and pass the shape of the input images:

    from keras.applications.inception_v3 import InceptionV3

    base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(SIZE,SIZE,CHANNELS))

  8. Add the output dense layer according to our problem:

    from keras.layers import GlobalAveragePooling2D, Dense, Dropout

    from keras.models import Model

    x = base_model.output

    x = GlobalAveragePooling2D()(x)

    x = Dense(256, activation='relu')(x)

    x = Dropout(0.5)(x)

    predictions = Dense(2, activation='softmax')(x)

     

    model = Model(inputs=base_model.input, outputs=predictions)

  9. Next, compile the model to make it ready for training:

    model.compile(loss='categorical_crossentropy',

                  optimizer='adam',

                  metrics = ['accuracy'])

    And then perform the training of the model:

    EPOCHS = 50

    BATCH_SIZE = 128

     

    model_details = model.fit_generator(custom_image_generator(train, batch_size = BATCH_SIZE),

                        steps_per_epoch = len(train) // BATCH_SIZE,

                        epochs = EPOCHS,

                        validation_data= validation_data,

                        verbose=1)

  10. Evaluate the model and get the accuracy:

    score = model.evaluate(validation_data[0], validation_data[1])

    print("Accuracy: {0:.2f}%".format(score[1]*100))

    The accuracy is as follows:

Figure 8.17: Model accuracy
Figure 8.17: Model accuracy

Activity 22: Using Transfer Learning to Predict Images

Solution:

  1. First, set the random number seed so that the results are reproducible:

    from numpy.random import seed

    seed(1)

    from tensorflow import set_random_seed

    set_random_seed(1)

  2. Set SIZE and CHANNELS

    SIZE is the dimension of the square image input. CHANNELS is the number of channels in the training data images. There are 3 channels in a RGB image.

    SIZE = 200

    CHANNELS = 3

  3. Create functions to get images and labels. Here PATH variable contains the path to the training dataset.

    from PIL import Image

    def get_input(file):

        return Image.open(PATH+file)

    def get_output(file):

        class_label = file.split('.')[0]

        if class_label == 'dog': label_vector = [1,0]

        elif class_label == 'cat': label_vector = [0,1]

        return label_vector

  4. Create a function to preprocess and augment images:

    def preprocess_input(image):

        

        # Data preprocessing

        image = image.resize((SIZE,SIZE))

        image = np.array(image).reshape(SIZE,SIZE,CHANNELS)

        

        # Normalize image

        image = image/255.0

        

        return image

  5. Finally, create the generator that will generate the batches:

    import numpy as np

    def custom_image_generator(images, batch_size = 128):

        

        while True:

            # Randomly select images for the batch

            batch_images = np.random.choice(images, size = batch_size)

            batch_input = []

            batch_output = []

            

            # Read image, perform preprocessing and get labels

            for file in batch_images:

                # Function that reads and returns the image

                input_image = get_input(file)

                # Function that gets the label of the image

                label = get_output(file)

                # Function that pre-processes and augments the image

                image = preprocess_input(input_image)

     

                batch_input.append(image)

                batch_output.append(label)

     

            batch_x = np.array(batch_input)

            batch_y = np.array(batch_output)

     

            # Return a tuple of (images,labels) to feed the network

            yield(batch_x, batch_y)

  6. Next, we will read the development and test data. Create a function to read the images and their labels:

    from tqdm import tqdm

    def get_data(files):

        data_image = []

        labels = []

        for image in tqdm(files):

            

            label_vector = get_output(image)

            

     

            img = Image.open(PATH + image)

            img = img.resize((SIZE,SIZE))

            

           

            labels.append(label_vector)

            img = np.asarray(img).reshape(SIZE,SIZE,CHANNELS)

            img = img/255.0

            data_image.append(img)

            

        data_x = np.array(data_image)

        data_y = np.array(labels)

            

        return (data_x, data_y)

  7. Now read the development and test files. The split for the train/dev/test set is 70%/15%/15%.

    import random

    random.shuffle(files)

    train = files[:7000]

    development = files[7000:8500]

    test = files[8500:]

    development_data = get_data(development)

    test_data = get_data(test)

  8. Plot a few images from the dataset to see whether you loaded the files correctly:

    import matplotlib.pyplot as plt

    plt.figure(figsize=(20,10))

    columns = 5

    for i in range(columns):

        plt.subplot(5 / columns + 1, columns, i + 1)

        plt.imshow(validation_data[0][i])

    Check the output in the following screenshot:

    Figure 8.18: Sample images from the loaded dataset
    Figure 8.18: Sample images from the loaded dataset
  9. Load the Inception model and pass the shape of the input images:

    from keras.applications.inception_v3 import InceptionV3

    base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(200,200,3))

    10. Add the output dense layer according to our problem:

    from keras.models import Model

    from keras.layers import GlobalAveragePooling2D, Dense, Dropout

    x = base_model.output

    x = GlobalAveragePooling2D()(x)

    x = Dense(256, activation='relu')(x)

    keep_prob = 0.5

    x = Dropout(rate = 1 - keep_prob)(x)

    predictions = Dense(2, activation='softmax')(x)

     

    model = Model(inputs=base_model.input, outputs=predictions)

  10. This time around, we will freeze the first five layers of the model to help with the training time:

    for layer in base_model.layers[:5]:

        layer.trainable = False

  11. Compile the model to make it ready for training:

    model.compile(loss='categorical_crossentropy',

                  optimizer='adam',

                  metrics = ['accuracy'])

  12. Create callbacks for Keras:

    from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, TensorBoard

    callbacks = [

        TensorBoard(log_dir='./logs',

                    update_freq='epoch'),

        EarlyStopping(monitor = "val_loss",

                     patience = 18,

                     verbose = 1,

                     min_delta = 0.001,

                     mode = "min"),

        ReduceLROnPlateau(monitor = "val_loss",

                         factor = 0.2,

                         patience = 8,

                         verbose = 1,

                         mode = "min"),

        ModelCheckpoint(monitor = "val_loss",

                       filepath = "Dogs-vs-Cats-InceptionV3-{epoch:02d}-{val_loss:.2f}.hdf5",

                       save_best_only=True,

                       period = 1)]

    Note

    Here, we are making use of four callbacks: TensorBoard, EarlyStopping, ReduceLROnPlateau, and ModelCheckpoint.

    Perform training on the model. Here we train our model for 50 epochs only and with a batch size of 128:

    EPOCHS = 50

    BATCH_SIZE = 128

    model_details = model.fit_generator(custom_image_generator(train, batch_size = BATCH_SIZE),

                       steps_per_epoch = len(train) // BATCH_SIZE,

                       epochs = EPOCHS,

                       callbacks = callbacks,

                       validation_data= development_data,

                       verbose=1)

    The training logs on TensorBoard are shown here:

    Figure 8.19: Training set logs from TensorBoard
    Figure 8.19: Training set logs from TensorBoard
  13. You can now fine-tune the hyperparameters taking accuracy of the development set as the metric.

    The logs of the development set from the TensorBoard tool are shown here:

    Figure 8.20: Validation set logs from TensorBoard
    Figure 8.20: Validation set logs from TensorBoard

    The learning rate decrease can be observed from the following plot:

    Figure 8.21: Learning rate log from TensorBoard
    Figure 8.21: Learning rate log from TensorBoard
  14. Evaluate the model on the test set and get the accuracy:

    score = model.evaluate(test_data[0], test_data[1])

    print("Accuracy: {0:.2f}%".format(score[1]*100))

    To understand fully, refer to the following output screenshot:

Figure 8.22: The final accuracy of the model on the test set
Figure 8.22: The final accuracy of the model on the test set

As you can see, the model gets an accuracy of 93.6% on the test set, which is different from the accuracy of the development set (93.3% from the TensorBoard training logs). The early stopping callback stopped training when there wasn't a significant improvement in the loss of the development set; this helped us save some time. The learning rate was reduced after nine epochs, which helped training, as can be seen here:

Figure 8.23: A snippet of the training logs of the model
Figure 8.23: A snippet of the training logs of the model
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image