Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Dancing with Python

You're reading from   Dancing with Python Learn to code with Python and Quantum Computing

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781801077859
Length 744 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (29) Chapters Close

Preface 1. Chapter 1: Doing the Things That Coders Do 2. Part I: Getting to Know Python FREE CHAPTER
3. Chapter 2: Working with Expressions 4. Chapter 3: Collecting Things Together 5. Chapter 4: Stringing You Along 6. Chapter 5: Computing and Calculating 7. Chapter 6: Defining and Using Functions 8. Chapter 7: Organizing Objects into Classes 9. Chapter 8: Working with Files 10. PART II: Algorithms and Circuits
11. Chapter 9: Understanding Gates and Circuits 12. Chapter 10: Optimizing and Testing Your Code 13. Chapter 11: Searching for the Quantum Improvement 14. PART III: Advanced Features and Libraries
15. Chapter 12: Searching and Changing Text 16. Chapter 13: Creating Plots and Charts 17. Chapter 14: Analyzing Data 18. Chapter 15: Learning, Briefly 19. References
20. Other Books You May Enjoy
21. Index
Appendices
1. Appendix A: Tools 2. Appendix B: Staying Current 3. Appendix C: The Complete UniPoly Class
4. Appendix D: The Complete Guitar Class Hierarchy
5. Appendix E: Notices 6. Appendix F: Production Notes

11.7 Summary

In this chapter, we looked at classical linear and binary search. In the first case, the items in the collection were not ordered initially, and so we were forced to look at each item in turn to locate the one we sought. When we could assume the items were sorted, the binary search method was much more efficient as we could iteratively divide the problem size in half until we got our result. We then turned to one of the most accessible quantum algorithms, Grover search. Using Grover, the search time became proportional to the square root of the number of items.

An important caveat with the Grover algorithm is that quantum computers today cannot process large enough collections of data so that it is practically more efficient than classical methods. Nevertheless, it is an excellent example of where and how we might get a quantum advantage.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime