Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Machine Learning Systems with Python

You're reading from   Building Machine Learning Systems with Python Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need.

Arrow left icon
Product type Paperback
Published in Jul 2013
Publisher Packt
ISBN-13 9781782161400
Length 290 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with Python Machine Learning FREE CHAPTER 2. Learning How to Classify with Real-world Examples 3. Clustering – Finding Related Posts 4. Topic Modeling 5. Classification – Detecting Poor Answers 6. Classification II – Sentiment Analysis 7. Regression – Recommendations 8. Regression – Recommendations Improved 9. Classification III – Music Genre Classification 10. Computer Vision – Pattern Recognition 11. Dimensionality Reduction 12. Big(ger) Data Where to Learn More about Machine Learning Index

Chapter 11. Dimensionality Reduction

Garbage in, garbage out, that's what we know from real life. Throughout this book, we have seen that this pattern also holds true when applying machine learning methods to training data. Looking back, we realize that the most interesting machine learning challenges always involved some sort of feature engineering, where we tried to use our insight into the problem to carefully craft additional features that the machine learner hopefully picks up.

In this chapter, we will go in the opposite direction with dimensionality reduction involving cutting away features that are irrelevant or redundant. Removing features might seem counter-intuitive at first thought, as more information is always better than less information. Shouldn't the unnecessary features be ignored after all? For example, by setting their weights to 0 inside the machine learning algorithm. The following are several good reasons that are still in practice for trimming down the dimensions as...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image